32 research outputs found

    Sequencing of RDR6-dependent double-stranded RNAs reveals novel features of plant siRNA biogenesis

    Get PDF
    Biogenesis of trans-acting siRNAs (tasiRNAs) is initiated by miRNA-directed cleavage of TAS gene transcripts and requires RNA-dependent RNA polymerase 6 (RDR6) and Dicer-like 4 (DCL4). Here, we show that following miR173 cleavage the entire polyadenylated parts of Arabidopsis TAS1a/b/c and TAS2 transcripts are converted by RDR6 to double-stranded (ds)RNAs. Additionally, shorter dsRNAs are produced following a second cleavage directed by a TAS1c-derived siRNA. This tasiRNA and miR173 guide Argonaute 1 complexes to excise the segments from TAS2 and three TAS1 transcripts including TAS1c itself to be converted to dsRNAs, which restricts siRNA production to a region between the two cleavage sites. TAS1c is also feedback regulated by a cis-acting siRNA. We conclude that TAS1c generates a master siRNA that controls a complex network of TAS1/TAS2 siRNA biogenesis and gene regulation. TAS1/TAS2 short dsRNAs produced in this network are processed by DCL4 from both ends in distinct registers, which increases repertoires of tasiRNA

    Changes in Biomass and Diversity of Soil Macrofauna along a Climatic Gradient in European Boreal Forests

    Get PDF
    Latitudinal gradients allow insights into the factors that shape ecosystem structure and delimit ecosystem processes, particularly climate. We asked whether the biomass and diversity of soil macrofauna in boreal forests change systematically along a latitudinal gradient spanning from 60° N to 69° N. Invertebrates (3697 individuals) were extracted from 400 soil samples (20 × 20 cm, 30 cm depth) collected at ten sites in 2015–2016 and then weighed and identified. We discovered 265 species living in soil and on the soil surface; their average density was 0.486 g d·w·m−2. The species-level diversity decreased from low to high latitudes. The biomass of soil macrofauna showed no latitudinal changes in early summer but decreased towards the north in late summer. This variation among study sites was associated with the decrease in mean annual temperature by ca 5 °C and with variation in fine root biomass. The biomass of herbivores and fungivores decreased towards the north, whereas the biomass of detritivores and predators showed no significant latitudinal changes. This variation in latitudinal biomass patterns among the soil macrofauna feeding guilds suggests that these guilds may respond differently to climate change, with poorly understood consequences for ecosystem structure and functions

    Changes in Biomass and Diversity of Soil Macrofauna along a Climatic Gradient in European Boreal Forests

    Get PDF
    Latitudinal gradients allow insights into the factors that shape ecosystem structure and delimit ecosystem processes, particularly climate. We asked whether the biomass and diversity of soil macrofauna in boreal forests change systematically along a latitudinal gradient spanning from 60° N to 69° N. Invertebrates (3697 individuals) were extracted from 400 soil samples (20 × 20 cm, 30 cm depth) collected at ten sites in 2015–2016 and then weighed and identified. We discovered 265 species living in soil and on the soil surface; their average density was 0.486 g d·w·m−2. The species-level diversity decreased from low to high latitudes. The biomass of soil macrofauna showed no latitudinal changes in early summer but decreased towards the north in late summer. This variation among study sites was associated with the decrease in mean annual temperature by ca 5 °C and with variation in fine root biomass. The biomass of herbivores and fungivores decreased towards the north, whereas the biomass of detritivores and predators showed no significant latitudinal changes. This variation in latitudinal biomass patterns among the soil macrofauna feeding guilds suggests that these guilds may respond differently to climate change, with poorly understood consequences for ecosystem structure and functions.</p

    Riociguat treatment in patients with chronic thromboembolic pulmonary hypertension: Final safety data from the EXPERT registry

    Get PDF
    Objective: The soluble guanylate cyclase stimulator riociguat is approved for the treatment of adult patients with pulmonary arterial hypertension (PAH) and inoperable or persistent/recurrent chronic thromboembolic pulmonary hypertension (CTEPH) following Phase

    Interactions of rice tungro bacilliform pararetrovirus and its protein P4 with plant RNA silencing machinery

    No full text
    Small interfering RNA (siRNA)-directed gene silencing plays a major role in antiviral defense. Virus-derived siRNAs inhibit viral replication in infected cells and potentially move to neighboring cells, immunizing them from incoming virus. Viruses have evolved various ways to evade and suppress siRNA production or action. Here we show that 21-, 22- and 24-nucleotide (nt) viral siRNAs together constitute up to 19% of total small RNA population of Oryza sativa plants infected with Rice tungro bacilliform virus (RTBV) and cover both strands of the RTBV DNA genome. However, viral siRNA hotspots are restricted to a short non-coding region between transcription and reverse transcription start sites. This region generates double-stranded RNA (dsRNA) precursor of siRNAs and, in pregenomic RNA, forms a stable secondary structure likely inaccessible to siRNA-directed cleavage. In transient assays, RTBV protein P4 suppressed cell-to-cell spread of silencing but enhanced cell-autonomous silencing, which correlated with reduced 21-nt siRNA levels and increased 22-nt siRNA levels. Our findings imply that RTBV generates decoy dsRNA that restricts siRNA production to the structured non-coding region and thereby protects other regions of the viral genome from repressive action of siRNAs, while the viral protein P4 interferes with cell-to-cell spread of antiviral silencing

    Sequencing of RDR6-dependent double-stranded RNAs reveals novel features of plant siRNA biogenesis

    Get PDF
    Biogenesis of trans-acting siRNAs (tasiRNAs) is initiated by miRNA-directed cleavage of TAS gene transcripts and requires RNA-dependent RNA polymerase 6 (RDR6) and Dicer-like 4 (DCL4). Here, we show that following miR173 cleavage the entire polyadenylated parts of Arabidopsis TAS1a/b/c and TAS2 transcripts are converted by RDR6 to double-stranded (ds)RNAs. Additionally, shorter dsRNAs are produced following a second cleavage directed by a TAS1c-derived siRNA. This tasiRNA and miR173 guide Argonaute 1 complexes to excise the segments from TAS2 and three TAS1 transcripts including TAS1c itself to be converted to dsRNAs, which restricts siRNA production to a region between the two cleavage sites. TAS1c is also feedback regulated by a cis-acting siRNA. We conclude that TAS1c generates a master siRNA that controls a complex network of TAS1/TAS2 siRNA biogenesis and gene regulation. TAS1/TAS2 short dsRNAs produced in this network are processed by DCL4 from both ends in distinct registers, which increases repertoires of tasiRNAs

    Single-Atom Pd Catalysts Supported on Covalent Triazine Frameworks for Hydrogen Production from Formic Acid

    No full text
    According to our knowledge, single-atom Pd catalysts supported on covalent triazine frameworks (CTF) have not been studied in the production of hydrogen from formic acid. Therefore, we synthesized 1 wt % Pd single-atom catalysts based on CTF-1, pyCTF, and bipyCTF supports and tested them in the gas-phase decomposition of formic acid. The results were compared with those obtained for a Pd catalyst supported on mesoporous graphitic-type carbon (Pd/C) with nanoparticles (∌2.3 nm). The catalysts were characterized by high-angle annular dark-field/scanning transmission electron microscopy (HAADF/STEM), extended X-ray absorption fine structure/X-ray absorption near-edge structure (EXAFS/XANES), and X-ray photoelectron spectroscopy (XPS) methods. The following order of catalytic activity was obtained: Pd/CTF-1 > Pd/C > Pd/pyCTF ≄ Pd/bipyCTF. The best performance of the Pd/CTF-1 catalyst was associated with Pd2+–C2N2 sites. Pd2+–N4 sites formed on pyCTF and bipyCTF supports showed lower catalytic activity. The selectivity trend at temperatures above 500 K was as follows: Pd/bipyCTF > Pd/pyCTF > Pd/CTF-1 > Pd/C. For the Pd/bipyCTF catalyst, the selectivity reached 99.8%, which is very high for this temperature range. These results may be important for the development of CTF-based catalysts for hydrogen production reactions.This work was supported by the Russian Science Foundation (Grant 22-23-00608). H.S.J. is grateful for the Ghent University and UGent Concerted Research Action funding via GOA010-17 for the synthesis and characterization of the CTF-based supports

    Primary and secondary siRNAs in geminivirus-induced gene silencing

    Get PDF
    In plants, RNA silencing-based antiviral defense is mediated by Dicer-like (DCL) proteins producing short interfering (si)RNAs. In Arabidopsis infected with the bipartite circular DNA geminivirus Cabbage leaf curl virus (CaLCuV), four distinct DCLs produce 21, 22 and 24 nt viral siRNAs. Using deep sequencing and blot hybridization, we found that viral siRNAs of each size-class densely cover the entire viral genome sequences in both polarities, but highly abundant siRNAs correspond primarily to the leftward and rightward transcription units. Double-stranded RNA precursors of viral siRNAs can potentially be generated by host RDR-dependent RNA polymerase (RDR). However, genetic evidence revealed that CaLCuV siRNA biogenesis does not require RDR1, RDR2, or RDR6. By contrast, CaLCuV derivatives engineered to target 30 nt sequences of a GFP transgene by primary viral siRNAs trigger RDR6-dependent production of secondary siRNAs. Viral siRNAs targeting upstream of the GFP stop codon induce secondary siRNAs almost exclusively from sequences downstream of the target site. Conversely, viral siRNAs targeting the GFP 3'-untranslated region (UTR) induce secondary siRNAs mostly upstream of the target site. RDR6-dependent siRNA production is not necessary for robust GFP silencing, except when viral siRNAs targeted GFP 5'-UTR. Furthermore, viral siRNAs targeting the transgene enhancer region cause GFP silencing without secondary siRNA production. We conclude that the majority of viral siRNAs accumulating during geminiviral infection are RDR1/2/6-independent primary siRNAs. Double-stranded RNA precursors of these siRNAs are likely generated by bidirectional readthrough transcription of circular viral DNA by RNA polymerase II. Unlike transgenic mRNA, geminiviral mRNAs appear to be poor templates for RDR-dependent production of secondary siRNAs
    corecore