158 research outputs found

    DNA damage precedes apoptosis during the regression of the interdigital tissue in vertebrate embryos

    Get PDF
    DNA damage independent of caspase activation accompanies programmed cell death in different vertebrate embryonic organs. We analyzed the significance of DNA damage during the regression of the interdigital tissue, which sculpts the digits in the embryonic limb. Interdigit remodeling involves oxidative stress, massive apoptosis and cell senescence. Phosphorylation of H2AX mediated by ATM precedes caspase dependent apoptosis and cell senescence during interdigit regression. The association of ?H2AX with other downstream DNA repair factors, including MDC1, Rad50 and 53BP1 suggests a defensive response of cells against DNA damage. The relative distribution of cells ?H2AX-only positive, TUNEL-only positive, and cells double positive for both markers is consistent with a sequence of degenerative events starting by damage of the DNA. In support of this interpretation, the relative number of ?H2AX-only cells increases after caspase inhibition while the relative number of TUNELonly cells increases after inhibition of ATM. Furthermore, cultured interdigits survived and maintained intense chondrogenic potential, even at advanced stages of degeneration, discarding a previous commitment to die. Our findings support a new biological paradigm considering embryonic cell death secondary to genotoxic stimuli, challenging the idea that considers physiological cell death a cell suicide regulated by an internal death clock that pre-programmes degeneration

    Connexin43 promotes exocytosis of damaged lysosomes through actin remodelling

    Get PDF
    A robust and efficient cellular response to lysosomal membrane damage prevents leakage from the lysosome lumen into the cytoplasm. This response is understood to happen through either lysosomal membrane repair or lysophagy. Here we report exocytosis as a third response mechanism to lysosomal damage, which is further potentiated when membrane repair or lysosomal degradation mechanisms are impaired. We show that Connexin43 (Cx43), a protein canonically associated with gap junctions, is recruited from the plasma membrane to damaged lysosomes, promoting their secretion and accelerating cell recovery. The effects of Cx43 on lysosome exocytosis are mediated by a reorganization of the actin cytoskeleton that increases plasma membrane fluidity and decreases cell stiffness. Furthermore, we demonstrate that Cx43 interacts with the actin nucleator Arp2, the activity of which was shown to be necessary for Cx43-mediated actin rearrangement and lysosomal exocytosis following damage. These results define a novel mechanism of lysosomal quality control whereby Cx43-mediated actin remodelling potentiates the secretion of damaged lysosomes

    Exosomes secreted by cardiomyocytes subjected to ischaemia promote cardiac angiogenesis

    Get PDF
    Funding Information: This work was supported by European Regional Development Fund (FEDER) through the Operational Program for Competitiveness Factors (COMPETE) [HealthyAging2020 CENTRO-01-0145-FEDER-000012-N2323, POCI-01-0145-FEDER-016385, POCI-01-0145-FEDER-007440 to CNC.IBILI, POCI-01-0145-FEDER-007274 to i3S/INEB and NORTE-01-0145-FEDER-000012 to T.L.L.]; national funds through the Portuguese Foundation for Science and Technology (FCT) [PTDC/SAU-ORG/119296/2010, PTDC/ NEU-OSD/0312/2012, PESTC/ SAU/UI3282/2013-2014, MITP-TB/ECE/0013/ 2013, FCT-UID/NEU/04539/2013], PD/BD/52294/2013 to T.M.R.R., SFRH/ BD/85556/2012 (co-financed by QREN) to V.C.S]; Lisboa Portugal Regional Operational Programme (LISBOA 2020) and Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement; and by INFARMED Autoridade Nacional do Medicamento e Produtos de Saúde, I.P. [FIS-FIS-2015-01_CCV_20150630-157]. Publisher Copyright: © 2017 The Author.Aims Myocardial infarction (MI) is the leading cause of morbidity and mortality worldwide and results from an obstruction in the blood supply to a region of the heart. In an attempt to replenish oxygen and nutrients to the deprived area, affected cells release signals to promote the development of new vessels and confer protection against MI. However, the mechanisms underlying the growth of new vessels in an ischaemic scenario remain poorly understood. Here, we show that cardiomyocytes subjected to ischaemia release exosomes that elicit an angiogenic response of endothelial cells (ECs). Methods and results Exosomes secreted by H9c2 myocardial cells and primary cardiomyocytes, cultured either in control or ischaemic conditions were isolated and added to ECs. We show that ischaemic exosomes, in comparison with control exosomes, confer protection against oxidative-induced lesion, promote proliferation, and sprouting of ECs, stimulate the formation of capillary-like structures and strengthen adhesion complexes and barrier properties. Moreover, ischaemic exosomes display higher levels of metalloproteases (MMP) and promote the secretion of MMP by ECs. We demonstrate that miR-222 and miR-143, the relatively most abundant miRs in ischaemic exosomes, partially recapitulate the angiogenic effect of exosomes. Additionally, we show that ischaemic exosomes stimulate the formation of new functional vessels in vivo using in ovo and Matrigel plug assays. Finally, we demonstrate that intramyocardial delivery of ischaemic exosomes improves neovascularization following MI. Conclusions This study establishes that exosomes secreted by cardiomyocytes under ischaemic conditions promote heart angiogenesis, which may pave the way towards the development of add-on therapies to enhance myocardial blood supply.publishersversionpublishe

    Interdigital cell death in the embryonic limb is associated with depletion of Reelin in the extracellular matrix

    Get PDF
    Interdigital cell death is a physiological regression process responsible for sculpturing the digits in the embryonic vertebrate limb. Changes in the intensity of this degenerative process account for the different patterns of interdigital webbing among vertebrate species. Here, we show that Reelin is present in the extracellular matrix of the interdigital mesoderm of chick and mouse embryos during the developmental stages of digit formation. Reelin is a large extracellular glycoprotein which has important functions in the developing nervous system, including neuronal survival; however, the significance of Reelin in other systems has received very little attention. We show that reelin expression becomes intensely downregulated in both the chick and mouse interdigits preceding the establishment of the areas of interdigital cell death. Furthermore, fibroblast growth factors, which are cell survival signals for the interdigital mesoderm, intensely upregulated reelin expression, while BMPs, which are proapototic signals, downregulate its expression in the interdigit. Gene silencing experiments of reelin gene or its intracellular effector Dab-1 confirmed the implication of Reelin signaling as a survival factor for the limb undifferentiated mesoderm. We found that Reelin activates canonical survival pathways in the limb mesoderm involving protein kinase B and focal adhesion kinase. Our findings support that Reelin plays a role in interdigital cell death, and suggests that anoikis (apoptosis secondary to loss of cell adhesion) may be involved in this process

    UHRF genes regulate programmed interdigital tissue regression and chondrogenesis in the embryonic limb

    Get PDF
    The primordium of the limb contains a number of progenitors far superior to those necessary to form the skeletal components of this appendage. During the course of development, precursors that do not follow the skeletogenic program are removed by cell senescence and apoptosis. The formation of the digits provides the most representative example of embryonic remodeling via cell degeneration. In the hand/foot regions of the embryonic vertebrate limb (autopod), the interdigital tissue and the zones of interphalangeal joint formation undergo massive degeneration that accounts for jointed and free digit morphology. Developmental senescence and caspase-dependent apoptosis are considered responsible for these remodeling processes. Our study uncovers a new upstream level of regulation of remodeling by the epigenetic regulators Uhrf1 and Uhrf2 genes. These genes are spatially and temporally expressed in the pre-apoptotic regions. UHRF1 and UHRF2 showed a nuclear localization associated with foci of methylated cytosine. Interestingly, nuclear labeling increased in cells progressing through the stages of degeneration prior to TUNEL positivity. Functional analysis in cultured limb skeletal progenitors via the overexpression of either UHRF1 or UHRF2 inhibited chondrogenesis and induced cell senescence and apoptosis accompanied with changes in global and regional DNA methylation. Uhrfs modulated canonical cell differentiation factors, such as Sox9 and Scleraxis, promoted apoptosis via up-regulation of Bak1, and induced cell senescence, by arresting progenitors at the S phase and upregulating the expression of p21. Expression of Uhrf genes in vivo was positively modulated by FGF signaling. In the micromass culture assay Uhrf1 was down-regulated as the progenitors lost stemness and differentiated into cartilage. Together, our findings emphasize the importance of tuning the balance between cell differentiation and cell stemness as a central step in the initiation of the so-called ?embryonic programmed cell death? and suggest that the structural organization of the chromatin, via epigenetic modifications, may be a precocious and critical factor in these regulatory events.Funding: We thank Montse Fernandez Calderon, Susana Dawalibi, and Sonia Perez Mantecon, for excellent technical assistance. This work was supported by a Grant (BFU2017-84046-P) from the Spanish Science and Innovation Ministry to J.A.M

    Myocardial infarction affects Cx43 content of extracellular vesicles secreted by cardiomyocytes

    Get PDF
    Ischemic heart disease has been associated with an impairment on intercellular communication mediated by both gap junctions and extracellular vesicles. We have previously shown that connexin 43 (Cx43), the main ventricular gap junction protein, assembles into channels at the extracellular vesicle surface, mediating the release of vesicle content into target cells. Here, using a comprehensive strategy that included cell-based approaches, animal models and human patients, we demonstrate that myocardial ischemia impairs the secretion of Cx43 into circulating, intracardiac and cardiomyocyte-derived vesicles. In addition, we show that ubiquitin signals Cx43 release in basal conditions but appears to be dispensable during ischemia, suggesting an interplay between ischemia-induced Cx43 degradation and secretion. Overall, this study constitutes a step forward for the characterization of the signals and molecular players underlying vesicle protein sorting, with strong implications on long-range intercellular communication, paving the way towards the development of innovative diagnostic and therapeutic strategies for cardiovascular disorders

    Nanopore native RNA sequencing of a human poly(A) transcriptome

    Get PDF
    High-throughput complementary DNA sequencing technologies have advanced our understanding of transcriptome complexity and regulation. However, these methods lose information contained in biological RNA because the copied reads are often short and modifications are not retained. We address these limitations using a native poly(A) RNA sequencing strategy developed by Oxford Nanopore Technologies. Our study generated 9.9 million aligned sequence reads for the human cell line GM12878, using thirty MinION flow cells at six institutions. These native RNA reads had a median length of 771 bases, and a maximum aligned length of over 21,000 bases. Mitochondrial poly(A) reads provided an internal measure of read-length quality. We combined these long nanopore reads with higher accuracy short-reads and annotated GM12878 promoter regions to identify 33,984 plausible RNA isoforms. We describe strategies for assessing 3′ poly(A) tail length, base modifications and transcript haplotypes
    corecore