158 research outputs found

    Does the geoid drift west?

    Get PDF
    In 1970 Hide and Malin noted a correlation of about 0.8 between the geoid and the geomagnetic potential at the Earth's surface when the latter is rotated eastward in longitude by about 160 degrees and the spherical harmonic expansions of both functions are truncated at degree 4. From a century of magnetic observatory data, Hide and Malin inferred an average magnetic westward drift rate of about 0.27 degrees/year. They attributed the magnetic-gravitational correlation to a core event at about 1350 A.D. which impressed the mantle's gravity pattern at long wavelengths onto the core motion and the resulting magnetic field. The impressed pattern was then carried westward 160 degrees by the nsuing magnetic westward drift. An alternative possibility is some sort of steady physical coupling between the magnetic and gravitational fields (perhaps migration of Hide's bumps on the core-mantle interface). This model predicts that the geoid will drift west at the magnetic rate. On a rigid earth, the resulting changes in sea level would be easily observed, but they could be masked by adjustment of the mantle if it has a shell with viscosity considerably less than 10 to the 21 poise. However, steady westward drift of the geoid also predicts secular changes in g, the local acceleration of gravity, at land stations. These changes are now ruled out by recent independent high-accuracy absolute measurements of g made by several workers at various locations in the Northern Hemisphere

    Correction due to finite speed of light in absolute gravimeters

    Full text link
    Correction due to finite speed of light is among the most inconsistent ones in absolute gravimetry. Formulas reported by different authors yield corrections scattered up to 8 μ\muGal with no obvious reasons. The problem, though noted before, has never been studied, and nowadays the correction is rather postulated than rigorously proven. In this paper we make an attempt to revise the subject. Like other authors, we use physical models based on signal delays and the Doppler effect, however, in implementing the models we additionally introduce two scales of time associated with moving and resting reflectors, derive a set of rules to switch between the scales, and establish the equivalence of trajectory distortions as obtained from either time delay or distance progression. The obtained results enabled us to produce accurate correction formulas for different types of instruments, and to explain the differences in the results obtained by other authors. We found that the correction derived from the Doppler effect is accountable only for 23\frac23 of the total correction due to finite speed of light, if no signal delays are considered. Another major source of inconsistency was found in the tacit use of simplified trajectory models

    Genetic Covariance Structure of Reading, Intelligence and Memory in Children

    Get PDF
    This study investigates the genetic relationship among reading performance, IQ, verbal and visuospatial working memory (WM) and short-term memory (STM) in a sample of 112, 9-year-old twin pairs and their older siblings. The relationship between reading performance and the other traits was explained by a common genetic factor for reading performance, IQ, WM and STM and a genetic factor that only influenced reading performance and verbal memory. Genetic variation explained 83% of the variation in reading performance; most of this genetic variance was explained by variation in IQ and memory performance. We hypothesize, based on these results, that children with reading problems possibly can be divided into three groups: (1) children low in IQ and with reading problems; (2) children with average IQ but a STM deficit and with reading problems; (3) children with low IQ and STM deficits; this group may experience more reading problems than the other two

    PPP-RTK and inter-system biases: the ISB look-up table as a means to support multi-system PPP-RTK

    Get PDF
    PPP-RTK has the potential of benefiting enormously from the integration of multiple GNSS/RNSS systems. However, since unaccounted inter-system biases (ISBs) have a direct impact on the integer ambiguity resolution performance, the PPP-RTK network and user models need to be flexible enough to accommodate the occurrence of system-specific receiver biases. In this contribution we present such undifferenced, multi-system PPP-RTK full-rank models for both network and users. By an application of (Formula presented.)-system theory, the multi-system estimable parameters are presented, thereby identifying how each of the three PPP-RTK components are affected by the presence of the system-specific biases. As a result different scenarios are described of how these biases can be taken into account. To have users benefit the most, we propose the construction of an ISB look-up table. It allows users to search the table for a network receiver of their own type and select the corresponding ISBs, thus effectively realizing their own ISB-corrected user model. By applying such corrections, the user model is strengthened and the number of integer-estimable user ambiguities is maximized

    An analytical study of PPP-RTK corrections: precision, correlation and user-impact

    Get PDF
    PPP-RTK extends the PPP concept by providing single-receiver users, next to orbits and clocks, also information about the satellite phase and code biases, thus enabling single-receiver ambiguity resolution. It is the goal of the present contribution to provide an analytical study of the quality of the PPP-RTK corrections as well as of their impact on the user ambiguity resolution performance. We consider the geometry-free and the geometry-based network derived corrections, as well as the impact of network ambiguity resolution on these corrections. Next to the insight that is provided by the analytical solutions, the closed form expressions of the variance matrices also demonstrate how the corrections depend on network parameters such as number of epochs, number of stations, number of satellites, and number of frequencies. As a result we are able to describe in a qualitative sense how the user ambiguity resolution performance is driven by the data from the different network scenarios

    Review of code and phase biases in multi-GNSS positioning

    Get PDF
    A review of the research conducted until present on the subject of Global Navigation Satellite System (GNSS) hardware-induced phase and code biases is here provided. Biases in GNSS positioning occur because of imperfections and/or physical limitations in the GNSS hardware. The biases are a result of small delays between events that ideally should be simultaneous in the transmission of the signal from a satellite or in the reception of the signal in a GNSS receiver. Consequently, these biases will also be present in the GNSS code and phase measurements and may there affect the accuracy of positions and other quantities derived from the observations. For instance, biases affect the ability to resolve the integer ambiguities in Precise Point Positioning (PPP), and in relative carrier phase positioning when measurements from multiple GNSSs are used. In addition, code biases affect ionospheric modeling when the Total Electron Content is estimated from GNSS measurements. The paper illustrates how satellite phase biases inhibit the resolution of the phase ambiguity to an integer in PPP, while receiver phase biases affect multi-GNSS positioning. It is also discussed how biases in the receiver channels affect relative GLONASS positioning with baselines of mixed receiver types. In addition, the importance of code biases between signals modulated onto different carriers as is required for modeling the ionosphere from GNSS measurements is discussed. The origin of biases is discussed along with their effect on GNSS positioning, and descriptions of how biases can be estimated or in other ways handled in the positioning process are provided.QC 20170922</p

    Markov Chain Monte Carlo and the Application to Geodetic Time Series Analysis

    Get PDF
    The time evolution of geophysical phenomena can be characterised by stochastic time series. The stochastic nature of the signal stems from the geophysical phenomena involved and any noise, which may be due to, e.g., un-modelled effects or measurement errors. Until the 1990's, it was usually assumed that white noise could fully characterise this noise. However, this was demonstrated to be not the case and it was proven that this assumption leads to underestimated uncertainties of the geophysical parameters inferred from the geodetic time series. Therefore, in order to fully quantify all the uncertainties as robustly as possible, it is imperative to estimate not only the deterministic but also the stochastic parameters of the time series. In this regard, the Markov Chain Monte Carlo (MCMC) method can provide a sample of the distribution function of all parameters, including those regarding the noise, e.g., spectral index and amplitudes. After presenting the MCMC method and its implementation in our MCMC software we apply it to synthetic and real time series and perform a cross-evaluation using Maximum Likelihood Estimation (MLE) as implemented in the CATS software. Several examples as to how the MCMC method performs as a parameter estimation method for geodetic time series are given in this chapter. These include the applications to GPS position time series, superconducting gravity time series and monthly mean sea level (MSL) records, which all show very different stochastic properties. The impact of the estimated parameter uncertainties on sub-sequentially derived products is briefly demonstrated for the case of plate motion models. Finally, the MCMC results for weekly downsampled versions of the benchmark synthetic GNSS time series as provided in Chapter 2 are presented separately in an appendix
    corecore