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Abstract The time evolution of geophysical phenomena can be characterised by
stochastic time series. The stochastic nature of the signal stems from the geophysical
phenomena involved and any noise, which may be due to, e.g., un-modelled effects
or measurement errors. Until the 1990’s, it was usually assumed that white noise
could fully characterise this noise. However, this was demonstrated to be not the case
and it was proven that this assumption leads to underestimated uncertainties of the
geophysical parameters inferred from the geodetic time series. Therefore, in order to
fully quantify all the uncertainties as robustly as possible, it is imperative to estimate
not only the deterministic but also the stochastic parameters of the time series. In
this regard, the Markov Chain Monte Carlo (MCMC) method can provide a sample
of the distribution function of all parameters, including those regarding the noise,
e.g., spectral index and amplitudes. After presenting the MCMC method and its
implementation in our MCMC software we apply it to synthetic and real time series
and perform a cross-evaluation using Maximum Likelihood Estimation (MLE) as
implemented in the CATS software. Several examples as to how the MCMCmethod
performs as a parameter estimation method for geodetic time series are given in this
chapter. These include the applications to GPS position time series, superconducting
gravity time series and monthly mean sea level (MSL) records, which all show very
different stochastic properties. The impact of the estimated parameter uncertainties
on sub-sequentially derived products is briefly demonstrated for the case of plate
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motion models. Finally, the MCMC results for weekly downsampled versions of
the benchmark synthetic GNSS time series as provided in Chapter 2 are presented
separately in an appendix.

Key words: Time Series Analysis, Stochastic Properties, Markov Chain Monte
Carlo, Random-Walk Metropolis-Hasting, Parameter Estimation, Parameter Uncer-
tainties, Geodesy and Geophysics

1 Introduction

The dynamics of different geophysical phenomena can be inferred by means of data
provided by space-geodetic techniques as, e.g., Doppler Orbitography and Radiopo-
sitioning Integrated by Satellite (DORIS) (Cazenave et al., 1992; Lefebvre et al.,
1996; Willis et al., 2010), Satellite Laser Ranging (SLR) (Pearlman et al., 2002;
Bloßfeld et al., 2018), Very Long Baseline Interferometry (VLBI) (Schlüter et al.,
2002; Nothnagel et al., 2017), and Global Navigation Satellite Systems (GNSS) such
as the Global Positioning System (GPS) (Beutler et al., 1999; Dow et al., 2009;
Teferle et al., 2009; Klos et al., 2018a). These techniques are usually used along with
others such as, for example, continuous measurements of near surface movements
from strainmeters (Wyatt, 1982, 1989; Langbein et al., 1993), and gravity measure-
ments (Van Camp et al., 2005; Van Camp et al., 2017). They provide data that allow
scientists to constrain geophysical models and, in turn, help to better understand
phenomena such as, tectonic plate motions (Larson and Agnew, 1991; Fernandes
et al., 2004), glacial isostatic adjustments (GIA) (Milne et al., 2001; Bradley et al.,
2009), seismic and inter-seismic crustal movements (Prawirodirdjo et al., 1997; Ar-
gus et al., 2005), hydrological processes (van Camp et al., 2006; Nahmani et al.,
2012) and atmospheric dynamics (Virtanen, 2004; Teke et al., 2011).

In all the above applications it is essential to analyse time series of observations
or some kind of derived quantities, such as position estimates from GNSS. While for
some applications it is the linear long-term movement derived from position time
series that is of interest (Fernandes et al., 2004; Bradley et al., 2009), for others it
is the non-linear and periodic displacements that want to be studied (Khan et al.,
2008; Nielsen et al., 2013). Nevertheless, since the late 1990s it has become clear that
geodetic time series need to be described by both deterministic and stochastic models
in order to obtain the best parameter estimates and avoid overly optimistic parameter
uncertainties (Langbein and Johnson, 1997; Zhang et al., 1997; Mao et al., 1999;
Caporali, 2003; Williams, 2003a; Langbein, 2004; Williams et al., 2004; Williams
and Willis, 2006; Langbein, 2008; Teferle et al., 2008; Bos et al., 2010, 2012;
Santamaría-Gómez et al., 2012; Klos et al., 2018b). The latter, in particular, may
affect studies of long-term changes due to, e.g., geodynamic processes or climate
change, where only small changes, e.g., at the millimetre per year level, are expected
over many years. Over the last two decades the field of geodetic time series analysis
has evolved substantially which is reflected in many publications and the fact that this
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book exists. The GPS Coordinate Time Series Analysis software (CATS) (Williams,
2008), using Maximum Likelihood Estimation (MLE), has been widely used within
the community to fit both deterministic and stochastic models to GPS position time
series (Teferle et al., 2002, 2008), gravity time series (Van Camp et al., 2005) and
mean sea level records (Hughes and Williams, 2010; Burgette et al., 2013). Here we
develop a Markov Chain Monte Carlo (MCMC) method with similar applications
in mind and investigate its benefits and drawbacks when compared to MLE as
implemented in CATS.

2 Markov Chain Monte Carlo as a Parameter Estimation Method

2.1 Fundamentals

Statistical analysis of geophysical data can be performed in two different ways: from a
full knowledge of the parameter space, which is equivalent to having the distribution
function, or from a data sample that accounts for the estimation of the distribution
function.

A full computation of the parameter space can be performed by mesh-like explo-
ration methods. However, when the number of parameters is high, the computational
loading can be overwhelming. Under such circumstances, methods that estimate the
distribution function are better than the mesh-like ones. One of such methods is the
Markov Chain Monte Carlo (MCMC) method. The theory of Markov chains is well
developed and further information can be found in Gilks et al. (1996).

A Markov chain is a series of random variables X (0), X (1), X (2), ..., in which the
influence of the values of X (0), X (1), X (2), ...,X (n) on the distribution of X (n+1) is
mediated by the value of X (n). More formally,

P(X (n+1) |X (0), X (1), X (2), ..., X (n)) = P(X (n+1) |X (n)) , (1)

where P(X) denotes the probability of X , i.e. the probability that the value for the
state variable x is X .

A Markov chain can be specified by giving the marginal distribution for X (0) -
the initial probabilities of the various variables - and the conditional distributions
for X (n+1) given the possible values of X (n) - the transition probabilities for one state
to follow another state. Henceforth, we will write the initial probability of state x as
p0(x), and the transition probability for state x ′ at time n+ 1 to follow state x at time
n as Tn(x, x ′). In our case the transition probabilities do not depend on time (as we
shall see later), so we will simply write T(x, x ′).

Using the transition probabilities, one can find the probability of state x occurring
at time n + 1, denoted by pn+1(x), from the corresponding probabilities at time n, as
follows:

pn+1(x) =
∑
x′

pn(x ′)T(x ′, x) , (2)
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where the summation goes over all possible states x ′ at time n. Given the initial
probabilities, p0, this determines the behaviour of the chain at all times.

We are interested in constructing Markov chains of which the distribution func-
tion, given by π, is invariant. For this, we will use time reversible homogeneous
Markov chains that satisfy the more restrictive condition of detailed balanced - that
if a transition occurs from a state picked according the probabilities given by π , then
the probability of that transition being from state x to state x ′ is the same probability
of it being from state x ′ to state x. In other words, for all x and x ′,

π(x)T(x, x ′) = π(x ′)T(x ′, x) , (3)

which implies that π is an invariant distribution, since∑
x′

π(x ′)T(x ′, x) =
∑
x′

π(x)T(x, x ′) = π(x)
∑
x′

T(x, x ′) = π(x) , (4)

where we have assumed that T(x, x ′) = 1.
For our purposes, it is not enough to find aMarkov chain of which the distribution

is invariant.We also require that theMarkov chain to be ergodic - that the probabilities
at time n, pn(x), converge to this invariant distribution as n → ∞, regardless of
the choice of the initial probabilities p0(x). Clearly, an ergodic Markov chain can
have only one invariant distribution, which is also referred to as its equilibrium
distribution.

Though we make use of an ergodic Markov chain there is no way to know how
long it takes to reach the equilibrium state. Nevertheless, we can estimate quite well
when it is very close (as close as we want, in fact) to such an equilibrium state.

2.2 The Random-Walk Metropolis-Hasting Algorithm

One of the simplestMCMC is the so-calledMetropolis-Hasting algorithm (Metropo-
lis et al., 1953), where starting at a point x of the Markov chain, a new one x ′ is then
accepted with probability α(x, x ′) given by

α(x, y) =
min

{
π(y)

π(x)
T(y, x)
T(x, y)

, 1
}
π(x)T(x, y) > 0

1, π(x)T(x, y) = 0 ,
(5)

where min(a, b) stands for the lowest number of the pair (a, b).
One special case is the Random-Walk Metropolis-Hastings (RWMH) algorithm.

In this case, the Markov chain depends on T(x, x ′) = T(x − x ′) and it behaves
as a random-walk process as it only depends on the the difference between two
consecutive points of the chain. Thus, Eq. (5) simplifies to

α(x, y) = min
{
π(y)

π(x)
, 1

}
. (6)
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Defining the acceptance rate (AR) of any Markov chain as the ratio of the number
of accepted points (those from the sample of π(x)) and the length of the chain, and
following Roberts and Rosenthal (2001), it can be proved that, as the dimension of
the space wherein the RWMH chain lies increases, the optimal step size steers the
AR to asymptotically converge to ∼ 0.234. While some argue that the optimal AR
of 0.234 may only be valid for Gaussian densities and not for non-linear models, we
find that in all the below applications we generally obtained good results.

The AR is a logistic function of the step size (ss), which is proportional to
(x − x ′). Indeed, as the step size goes to zero all the proposed values of the chain can
be accepted, i.e. AR ∼ 1, whereas for step sizes too long, the new state x may lie too
far away from the maxima of the distribution function, hence it is not accepted, or, in
other words, AR ∼ 0. Consequently, a linear fit of log(AR) and log(ss) can provide
the optimal value of the latter in order to get AR ∼ 0.234. With that automatic
estimate of the step size we can improve efficiency and save a lot of time, as the
amount and variability of the time series to be analysed can be huge, and for each of
them, the ss can be quite different.

2.3 The Markov Chain Monte Carlo Algorithm

The expected values of the estimated parameters are conditioned to the observational
data. Note that there is only one data set per station as we can not replicate the
observations, but it is possible to simulate as many parameter values as needed. So
actually, it is the probability function of recovering the observational data given a
parameter set that can be sampled. According to the Bayes theorem the former is
related with the probability function of the parameters set of dimension N , θ ≡
(θ1, ...θN ), given an observational data set, Mobs , as follows:

P(θ |Mobs) = L(Mobs |M th(θ))P(θ) , (7)

where M th(θ) is the theoretical magnitude that depends on the value of the
parameters set θ, L is the Likelihood and it yields the probability of the data
given the parameters, and, finally, P(θ) is the a priori probability function of the
parameters.

Once the likelihood is well determined, along with the priors, the posterior distri-
bution, P(α |Mobs), can be computed. Then the expected values of the parameters
of the model can be estimated by means of Monte Carlo integration as follows:

< θi >=

∫
L(θ)θidθ j =

∑
t=1,T

θt,i

T
, ∀ j , i , (8)

where T is the number of points in the chain and αt,i denotes the value of the
parameter αi at the t − th step of the chain. The 100(1 − 2p)% confidence interval[
cp, c1−p

]
for a parameter is estimated by setting cp to the pth quantile of αt,i ,

t = 1, ..,T and c1−p to the (1 − p)th quantile.
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The algorithm that steers the MCMC through the posterior distribution surface is
summarised below:

1. Start with a set of parameters {αi}, compute the trend (linear and seasonal) and
the likelihood Li = L(y

i |yobs), where yi is the ith model, and yobs the observed
data.

2. Take a random step in parameter space to obtain a new set of parameters {αi+1}.
The probability distribution of the step is taken to be Gaussian in each direction i
with the r.m.s given by σi . We will refer to σi as the step size. The choice of this
step size is important in order to optimise the chain efficiency.

3. Compute the yi+1 model for the new set of parameters {αi+1} and their likelihood
Li+1.

4. If Li+1/Li > 1, take the step, i.e. save the new set of parameters {αi+1} as part
of the chain, then go to step 2 after the substitution {αi} → {αi+1}.

5. If Li+1/Li < 1, draw a random number x from a uniform distribution from 0 to
1. If x > Li+1/Li do not take the step, i.e. save the parameter set {αi} as part of
the chain and return to step 2. If x < Li+1/Li take the step, i.e. do as in 4.

6. When the Markov chain achieves the equilibrium state (explained in section 3.1)
and the chains have enough points to provide reasonable samples from the pos-
terior distributions, i.e. enough points to reconstruct the 1σ and 2σ levels of the
marginalised likelihood for all the parameters, the chains are stopped.

This algorithm admits values for which Li+1/Li < 1 provided the condition
x < Li+1/Li holds. Therefore, as it does not guarantee convergence towards the
maximum value of the likelihood but rather to a region wherein the maximum lies.
It is not an asymptotically consistent maximum likelihood estimator. Consequently,
with the fifth condition of the algorithm the MCMC method is not a Maximum
Likelihood Estimation (MLE) method.

3 General Considerations for Markov Chain Monte Carlo

Let us consider a general power-law spectrum such as (Agnew, 1992)

P( f ) = P0

(
f0
f

)−κ
, (9)

where P0 and f0 are constant, f is the frequency and −κ the spectral index.
We note here that throughout this chapter, the spectral index has different sign

with respect to other chapters of this book, i.e. Flicker noise corresponds to −κ = 1.
As Hosking (1981) showed that all times series with −κ > 1 are non-stationary,

thus there is not an uniqueness relationship between the covariance matrix and any
sample vector of length T . In other words, the zeroth and first statistical moments
(i.e. the mean and the covariance) are not the only non-zero moments. Moreover, the
covariance may evolve in time.
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In Fig. (1) the spectral index −κ, the power-law amplitude σpl,0, the linear trend
V0 and the ordinate y0 of two time series are the same (all in arbitrary units), hence
they have the same covariance matrix, though their evolutions are quite dissimilar.
Therefore, an estimation of the velocities by means of the sample recovery of the
posterior distribution function would yield different values.

0 10 20 30 40 50 60 70 80 90 100
−50

0

50

100

150

200

250

300

350

Epoch

{y
i}

Fig. 1: Two non-stationary time series generated with the same model parameters:
−κ0 = 2.3, σpl,0 = 4.5 and V0 = 3.1.

This is observed in Fig. 2, where the histogram for every parameter is shown.
In Fig. (2d), there are several local maxima for the velocity. As a consequence, the
estimation of the linear trend might not be uniquely determined for non-stationary
processes. Nevertheless, by computing the first difference any non-stationary time
series (provided −κ < 2) can be transformed into a stationary one, thus the slope
would come exclusively from non-stochastic processes.

A similar bias effect on the slope estimation due to seasonal processes was already
noticed by Blewitt and Lavallée (2002). The difference is that the seasonal bias effect
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Fig. 2: Histograms of the estimated parameters with −κ0 = 2.3, σpl,0 = 4.5 and
V0 = 3.1 as true values.

decreases as the time series length increases, whereas it does not for non-stationary
stochastic processes unless they have been differenced beforehand.

3.1 The Equilibrium State

The equilibrium or stationary state of the MCMC method implies that the estimates
of the parameters can not be significantly improved (from the statistical standpoint
by obtaining more points of the distribution function). There are some common
characteristics of the stationary state to take into account:

• For a RWMH algorithm the acceptance rate (AR) or sample density should be
∼ 0.234 (Roberts and Rosenthal, 2001).

• The spectrum of the Markov chain at low frequency should be flat, meaning
that there are no correlations or these are damped enough for the points to be
considered independent of each other, thus minimising any bias on the estimates.
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3.2 The Acceptance Rate

The AR, which is defined as the ratio between the points from the sample and all the
points tried by the Markov chain, depends mainly on the step size. If the step size is
too long, it could yield a low acceptance rate; if it is too short, the sample data would
not be well mixed, i.e. they might have a big correlation, though the acceptance rate
would be high. So, good convergence and good mixing is achieved with a trade off
on the step size.

The AR is a logistic function of the inverse of the step size 1/ss:

AR(s) =
1

1 + γ e−1/ss , (10)

with γ being a non-dimensional parameter that controls the transition from low to
high values of the argument of the logistic function. Indeed, Fig. 3 shows that for
small step sizes, i.e. big 1/ss values, most of the the proposed values of the chain are
accepted, i.e. AR ∼ 1, whereas for step sizes too long (small 1/ss values) AR ∼ 0.
According to that, a linear fit of log(AR) and log(ss) can estimate the optimal value
for the latter in order to get AR ∼ 0.234 (horizontal vertical line in 3), which is
a necessary condition for an optimal performance of the MCMC method so as to
obtain an unbiased sample of the parameters distribution.

3.3 The Spectrum of the Markov Chain

At small scale, the Markov chain is mainly a random-walk process, therefore the
points therein are correlated and any estimate for the parameters at that scale will
be biased. In order to get a non-biased estimate, the Markov chain has to reach the
stationary state and a good mixing. By the ergodic theorem (Gilks et al., 1996),
the Markov chain at long-scale provides a homogeneous sample of the distribution
function, i.e. when its length is long enough it yields a white-noise-like spectrum.
Following Dunkley et al. (2005) this spectrum can be written as

P(k) = P0
(k∗/k)β

(k∗/k)β + 1
, (11)

where β > 0 is the spectral index of the spectrum of the Markov chain (it has
nothing to do with the spectral index −κ of the time series itself), k = j(2π/M) is
the scale (with j ∈ N), M the length of the chain, k∗ the cross-over scale, i.e. the
inverse of the length for which two points of the Markov chain that distance apart (at
least) are uncorrelated, and P0 = P(k → 0).
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Fig. 3: Logistic function for AR vs. the inverse of the step size 1/ss (in AU). Black
solid lines correspond to AR = 0.234 (horizontal) and optimal step size ss = 0.30 AU
(vertical).

Fig. 4 shows the theoretical spectrum above for a long Markov chain obtained
from a Random-Walk Metropolis-Hasting algorithm. The values of the parameters
are P0 = 100, β = 2 and k∗ = 1 (all in AU). At low frequency (k < k∗) there is
a plateau, meaning that points in the Markov chain at distances longer than 1/k∗
are uncorrelated. On the other hand, at high frequency (k > k∗) the points are
correlated, giving rise to biased parameter estimates. Therefore, the spectral analysis
of the Markov chain provides a tool to estimate the length for which the bias on the
estimated parameters is minimised.

According to Dunkley et al. (2005), the Markov chain has a good mixing when
kmin ≡ 1/M is in the white noise regime, i.e. kmin < k∗, as it guarantees that the
chain is long enough to minimize correlations between Markov chain points, hence
obtaining unbiased estimates.

Finally, as it takes some time for the chain to achieve the stationary state which
guarantees the ergodic theorem to hold (Gilks et al., 1996), ∼ 33% of the first points
are usually burned.



Markov Chain Monte Carlo and the Application to Geodetic Time Series Analysis 11

10
−3

10
−2

10
−1

10
0

10
1

10
0

10
1

10
2

10
3

k

P
(k

)

Uncorrelated points of the
Markov chain at k<<k*

Correlated points of the
Markov chain at k>>k*

Fig. 4: Power spectrum for longMarkov chains of Random-WalkMetropolis-Hasting
algorithms.

4 Applications

In this section, time series from different geodetic data sets were analysed using
the MCMC method described previously and implemented in our in-house MCMC
software. The data sets comprise a set of synthetic time series as well as measure-
ments and solutions from three different geodetic techniques: GPS, superconducting
gravity and tide gauge records.

The synthetic time series were generated in order to assess the MCMC method
through investigating the ability of the algorithm to recover the input values when
generating the time series. Aspects of this analysis were published in Olivares and
Teferle (2013).

The analysis of the first real data set consists in applying the MCMC method
to GPS position time series from the Jet Propulsion Laboratory (JPL). Moreover,
plate motion models were computed using the velocities and uncertainties obtained
from the MCMC and MLE methods, the latter as implemented in CATS (Williams,
2008), in order to assess their differences and the impact on the plate-motion model
parameter estimates.

The second real data set comprises gravity measurements from the superconduct-
ing gravimeter at Membach, Belgium, which are analysed in order to estimate the
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noise and the trend (Van Camp et al., 2005, 2016). These gravity time series show
largely different characteristics from the position estimates derived from continuous
GPS measurements.

Finally, the third real data set comprises tide gauge records from the Permanent
Service of Mean Sea Level (PSMSL) as archived in its Revised Local Reference
(LRL) database (Holgate et al., 2013). Again the characteristics of this data set
are significantly different from the other two sets. Furthermore, the PSMSL only
provides trend estimates based on a white noise only stochastic model.

4.1 Position Time Series

In this section we employ daily position time series that were 1) synthetically gen-
erated and 2) obtained from the Jet Propulsion Laboratory (JPL) GPS time series
website1.

4.1.1 Synthetic Data

Firstly, 100 synthetic time series with different real parameters are analysed with
our MCMC software and CATS (using CATS v3.1.2). Thus we can investigate and
describe their common features and differences. We used CATS as the benchmark
for the performance of the MCMC method.

A combination of linear and periodic terms, and time-correlated noise with length
N = 500 is considered in order to assess the performance of the newMCMCmethod:

y(t) = y0 + v (t − t0) +
k=H∑
k=1
(Ac

k cos(2π fk t) + As
k sin(2π fk t)) + r(t) , (12)

where the parameters to be estimated are the ordinate y0, the velocity v, the
periodic amplitudes Ac

k
and As

k
of the k th harmonic, and the stochastic noise r(t)

components: the spectral index−κ, the power amplitude of the power-law processσpl

and that of the white noise σwn, all of them in artificial units (AU). The frequencies
fk of the harmonics, the number of harmonics H and the initial epoch t0 are input
values. Table 1 shows the true values of the parameters, which are typical of real
GPS time series (Zhang et al., 1997; Mao et al., 1999; Williams et al., 2004; Hackl
et al., 2011).

Then, another set of 100 synthetic time series is analysed with MCMC and CATS
in order to assess the performance of both, thus highlighting their differences and
similarities. For this case, semi-annual terms were also included in Eq. 12. The first
time series was generated with the initial true values listed in the second column of

1 http://sideshow.jpl.nasa.gov/post/series.html
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Table 1: True values (in AU) of the parameters of the synthetic time series.

Parameter True Value
−κ 1.10
σpl 1.00
σwn 0.20
v 20.00
y0 0.00
Ac 10.00
As 5.00

Table 2: Initial true values and Gaussian generators of the parameters of the 100
synthetic time series data set. All parameters are in AU.

Parameter Initial true value Gaussian generator
−κi 1.10 N(−κi−1, 0.1)
σpl, i 2.30 N(σpl, i−1, 0.01)
σwn, i 2.00 N(σwn, i−1, 0.01)
vi 20.00 N(vi−1, 10)
y0, i 0.00 N(y0, i−1, 0.02)
Ac

1 yr , i
1.00 N(Ac

1 yr , i−1, 0.1)
As

1 yr
5.00 N(As

1 yr , i−1, 0.1)
Ac

0.5 yr
1.00 N(Ac

0.5 yr , i−1, 0.1)
As

0.5 yr
2.00 N(As

0.5 yr , i−1, 0.1)

Table 2. Then, for the other 99 time series, their true values were generated with
a random-walk process starting at the initial true values with Gaussian generators
listed in the third column of Table 2.

Fig. 5 shows a synthetic time series representative of the data set. For all of
them the period spans around 10 years. The periodic amplitudes have been enhanced
(compared, for example, with those in Fig. 11) in order to assess the robustness of
both methods.

Parameter Estimates.
The analysis carried out on the synthetic time series shows that the model pa-

rameter estimates from both methods agree very well, with some differences in their
stochastic parameters. Ideally, as both implementations assume a Gaussian likeli-
hood, they should lead to equivalent results. Nevertheless, in general, the MCMC
software estimates larger −κ and σwn, and slightly smaller σpl than the MLE imple-
mentation in CATS. As for the model parameters, the MCMC method yields larger
values for all of them.
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Fig. 5: Synthetic data generated with parameters from Table 2.

The correlation plots in Fig. 6 show the estimates for −κ (a), σpl (b) and σwn

(c). The −κ estimates fromMCMC are larger than for CATS, whereas Fig. 6b shows
larger σpl estimates from CATS. Fig. 6a indicates a systematic bias between the −κ
estimates of both implementations. These differences are further investigated later
in the analysis with real GPS position time series.

A Linear Least Squares (LLS) fit estimates the correlation (the slope of the fit)
and the bias (the ordinate of the fit). Thus the following linear relationship between
estimates and uncertainties of both methods is assumed

parMCMC = a × parCATS + b , (13)

where parMCMC (parCATS ) is either an estimated parameter or its uncertainty from
the MCMC (CATS) method, a is the slope, and b the bias. This formula allows
transformation of all the analysis carried out with CATS into MCMC values.

Table 3 summarises the results for all parameters but σwn. For −κ, the values of
the slope (a = 0.78) and the bias (b = 0.37) account for the disagreement between
both methods at low values of the spectral index, whereas the estimates meet at high
values.
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Another analysis carried out on a data set of 100 synthetic time series for which
the true value of the spectral index ranges from 0 to 5 supports this value of the
slope. Fig.7 shows the parameter estimates for −κ from MCMC vs. CATS of this
last synthetic data set. The figure suggests that the estimates agree much better at
high values. In this case, a = 0.91 and b = 0.28. The better correlation shown at
high values in Fig. 7 suggests that, like the MCMC method, CATS is also a good
estimator of the spectral index for non-stationary time series (Olivares and Teferle,
2013).

The red-circled points in Fig. 7 are estimates for which CATS sets σwn = 0. The
fact that they cluster at low value suggests that these discrepancies of −κ stem from
the way CATS deals with low spectral index values. When these are too small, CATS
considers there is only power-law noise, thus setting the white noise amplitude equal
to zero2 (red-circled points along the vertical axis in Fig. 6c). Consequently, the
spectral index is whitened in order to account for the amplitude of the white noise
process, hence the larger positive bias (marked as red-circled points) in Fig. 6a.
Moreover, the power-law amplitude from CATS is shifted up to include the power
from the white noise process, thus introducing larger (more negative) bias between
both estimates at high values as it is observed in Fig 6b (red-circled points).

As for the model parameters, the correlation plots in Fig. 8 show that the estimates
from both methods agree very well. Apart from a few outliers (any point beyond
3σ confidence level), which come either from a Markov chain that did not achieved
the stationary state, or from numerical issues in CATS, the data cluster along the
diagonal. Their values for the LLSfit parameters in Table 3 also showgood agreement
with a ∼ 1 for all and, in general, small biases, except for As

1 yr .
In order to numerically assess their agreements, the RMS with respect to the true

value was computed for both methods. Table 4 summarises the RMS in AU for the
estimates from both methods as implemented in MCMC and CATS. It shows that
the RMS for the −κ estimates are in good agreement: RMS = 0.20 and RMS = 0.22
for the estimate fromMCMC and CATS, respectively. Nevertheless, the values from
the σpl estimates differ further: RMS = 0.44 and RMS = 0.51, i.e. an improvement
of 14% by the MCMC method. And, due to the way CATS sets σwn = 0 for low
values of σpl , the RMS from both methods are even more different: RMS = 0.47
for the MCMC, and RMS = 1.01 for the CATS method, i.e. 53% smaller for the
MCMC than for the CATS method.

On the other hand, the values of the RMS of the estimates of the model parameters
shown in Table 4 do not differ that much with RMS = 0.41 , 0.30 , 0.30 for the
estimates of v, Ac

0.5 yr and As
0.5 yr , respectively, from theMCMCmethod; and RMS =

0.40 , 0.30 , 0.32 for their CATS counterparts. The other three model estimates from
CATS, though, show better fit, with RMS = 1.61 , 0.44 , 0.39, for y0, Ac

1 yr , As
1 yr ,

2 S.D.P. Williams, personal communication, 2012.
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Table 3: Table of LLS fit parameters, as defined in Eq. 13 (synthetic data).

Parameter
a b

−κ 0.78 0.37
σpl 0.75 0.46
v 1.00 -0.03
y0 0.96 0.14
Ac

1 yr
1.01 0.00

As
1 yr

0.92 0.32
Ac

0.5 yr
0.97 0.02

As
0.5 yr

0.93 0.12

respectively; whereas the estimates from the MCMC are larger, namely RMS =
1.76 , 0.52 , 0.59.

To summarise, according to the results for the RMS, both methods perform
alike, except for the estimate of the amplitude of the white noise, which is clearly
underestimated by the CATS method.
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Table 4: RMS values (in AU) for parameter estimates from the MCMC and CATS
methods.

Method −κ σpl σwn v y0 Ac
1 yr

As
1 yr

Ac
0.5 yr

As
0.5 yr

MCMC 0.20 0.44 0.47 0.41 1.76 0.52 0.59 0.30 0.30
CATS 0.22 0.51 1.01 0.40 1.61 0.44 0.39 0.30 0.32

Table 5: Table of LLS fit parameters, as defined in Eq. 13, for uncertainties (synthetic
data). All parameters are in AU.

Parameter
a b

σv 1.22 0.11
σy0 0.16 1.41
σAc

1 yr
0.62 0.40

σAs
1 yr

1.01 0.03
σAc

0.5 yr
0.95 0.06

σAs
0.5 yr

0.96 0.05

Uncertainties.
Fig. 9 shows the correlation of the uncertainties for the model parameters, i.e. σv ,

σy0 , σAc
1 yr

, σAs
1 yr

, σAc
0.5 yr

and σAs
0.5 yr

, from both methods. In general, the velocity
(Fig. 9a) and periodic terms (Figs. 9b, 9c, 9e and 9f) uncertainties align along and
above the diagonal, meaning that they clearly correlate with larger values from the
MCMC method. The exception is σy0 , in Fig. 9d, for which the uncertainties from
the CATS method are larger than from the MCMC method. Besides showing a low
correlation, Fig. 9d also indicates that for large σy0 values, the difference between
these from the CATS and MCMC methods increases.

Table 5 summarises the values of the LLS fit that transforms the values from the
CATS method. The uncertainties σv , σAs

1 yr
, σAc

0.5 yr
and σAs

0.5 yr
are well correlated

along the diagonal with a = 1.22 , 1.01 , 0.95, and 0.96, respectively, with small
biases, namely b = 0.11 , 0.03 , 0.06, and 0.05. Though a = 0.16 for σy0 , its bias is
larger, b = 1.41. The outliers at the head and tail of Fig. 9b lead to a smaller slope,
a = 0.62, and higher bias, b = 0.40, on σAc

1 yr
.

As the parameter space is wider for the MCMCmethod, it explores the surround-
ings of the maximum of the likelihood for all parameters, including −κ, hence the
larger uncertainties for all parameters except for y0. The stochastic amplitudes −κ,
σpl and σwn estimated from MCMC reduce the RMS (see Table 4), therefore the
estimated uncertainties, though larger, provide a more comprehensive estimate of
the noise.

Other statistic variables that provide a comprehensive analysis of both methods
are the median of the ratio of the uncertainties from both methods of the estimate of
p, i.e.



20 Markov Chain Monte Carlo

0
.5

1
1

.5
2

2
.5

0
.5 1

1
.5 2

2
.5

v

MCMC

(a
)

0
.2

0
.4

0
.6

0
.8

1
1

.2

0
.2

0
.4

0
.6

0
.8 1

1
.2

A
c
,1

 y
r

(b
)

0
.5

0
.6

0
.7

0
.8

0
.9

1

0
.5

0
.6

0
.7

0
.8

0
.9 1

A
c
,0

.5
 y

r

(b
)

0
.5

1
1

.5
2

2
.5

3
3

.5
4

4
.5

0
.5 1

1
.5 2

2
.5 3

3
.5 4

4
.5

y
0

MCMC

M
L
E

(d
)

0
.2

0
.4

0
.6

0
.8

1
1

.2
0

.2

0
.4

0
.6

0
.8 1

1
.2

A
s
,1

 y
r

M
L

E

(e
)

0
.4

5
0

.5
0

.5
5

0
.6

0
.6

5
0

.7
0

.7
5

0
.8

0
.8

5

0
.4

5

0
.5

0
.5

5

0
.6

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

A
s
,0

.5
 y

r

M
L
E

(f)

Fig.9:U
ncertaintiesin

AU
for

v
(a),A

c1
y
r
(b),A

c0
.5
y
r
(c),

y0 (d),A
s1
y
r
(e)and

A
s0
.5
y
r
(f)estim

ates.



Markov Chain Monte Carlo and the Application to Geodetic Time Series Analysis 21

Table 6: Values in AU of the median of the ratio of the uncertainties Rp , and the
median of the differences ∆p (synthetic data).

Uncertainty Rp ∆p

σv 1.40 0.23
σy0 0.69 -0.88
σAc

1 yr
1.08 0.06

σAs
1 yr

1.07 0.06
σAc

0.5 yr
1.04 0.02

σAs
0.5 yr

1.03 0.02

Rp ≡ median

(
σMCMC
p

σCATS
p

)
, (14)

and the median of the differences, namely

∆p ≡ median (pMCMC − pCATS) . (15)

These are listed in Table 6 for the synthetic data. Concerning the ratios (second
column in Table 6), the largest absolute median is that for σv , namely Rv = 1.40,
whereas the smallest is for y0: Ry0 = 0.69. On the other hand, the uncertainties of
the periodic terms from both methods are quite similar ranging from 1.03 to 1.08.
As for the differences (third column in Table 6), the largest one is for the ordinate
uncertainty, namely −0.88. This also makes the largest difference between the bias
(third column in Table 5) and ∆y0 . For the other parameters their ∆p values are of
the same order of magnitude as their ratio counterparts.

Although Rp (∆p) and a (b) (see Table 5) for the velocity and periodic terms
estimates are similar, the latter is less robust with outliers, as the large difference
between Ry0 = 0.69 (∆y0 = −0.88) and a = 0.16 (b = 1.41) indicates. Therefore, in
order to provide a more robust assessment it is advised to use Rp and ∆p rather than
a and b for rescaling from CATS onto MCMC values, as the former provide more
robust statistical information.

4.1.2 Real Data

At the time of this study JPL provided 2381 daily position time series processed
using the Precise Point Position (PPP) strategy in the GIPSY-OASIS II software3
(Zumberge et al., 1997). Out of them, 90 GPS stations (shown in Fig. 10) from
the International GNSS Service (IGS) have been selected in order to perform the
analysis. Fig. 11 shows the North, East and Up components of station ALIC as a
representative GPS position time series from this data set. Also shown are the root

3 The software is available in http://sideshow.jpl.nasa.gov/post/series.html
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Fig. 10: Map of the GPS stations of the IGS core network.

mean square (RMS) values, which are 1.26 mm and 1.25 mm for the North and East
components, respectively; whereas for the UP component it is 3.66 mm. These are
typical values of the RMS of GPS time series and in this case, but also in general,
the RMS for the Up component is ∼ 3 times larger than the RMS for the North and
East components.

Alongside the trended (and detrended) time series, JPL also provides the epochs
of the discontinuities within the time series. In total JPL reported 4078 offsets for
this data set, meaning 1.7 offsets per station on average. As such offsets introduce
additional coloured noise (Williams, 2003b), the time series were corrected before
the analysis of the stochastic properties. Furthermore, discontinuities in the position
time series may have significant affects on the parameter estimates (Williams, 2003b;
Gazeaux et al., 2013).

Fig. 12(a) shows the spans of the weekly time series. Note than the spans of JPL
time series range from over 6 years to about 19 years. In Fig. 12(b) the histograms
of the gaps in the time series show short periods of gaps as more than 87% of
them have less than 25% of epoch discontinuities, i.e. gaps. Gaps introduce zeroes
in the inverse of the covariance matrix thereby making it sparser and shifting the
spectral index estimate. The problem with a sparse matrix is that it may have a high
conditioning number, thus leading to a biased likelihood when its inverse (i.e. the
covariance matrix) is computed.

These 90 daily position time series from the IGS core network were converted into
weekly position time series in order to boost the computational speed. Though the
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Fig. 11: GPS time series for ALIC. From top to bottom: North, East and Up compo-
nents.

conversion from daily to weekly time series might modify the stochastic parameters
(Kirchner, 2005), it does not affect the comparison between the MCMC and CATS
methods, as long as the time series are the same for both.

Parameter Estimates. The results for the analysis of the JPL data set are similar
to those for the synthetic data set. In general, −κ for the MCMC method is larger
than for CATS, whereas the estimated model parameters for both methods agree
very well.

On the other hand, σpl for the CATS method is larger than for MCMC, in good
agreement with the results for the synthetic time series.

Regarding σwn, most of the values for CATS (82% , 77% , 70%, for the North,
East and Up components, respectively) are set to zero.

According to Figs. 13a, 13b and 13c, the estimates of the spectral index −κ for
all three components are above the diagonal, i.e. the MCMC method yields larger
estimates for this parameter than CATS. On the other hand, Figs. 14a, 14b and 14c
show that σpl for all three components are larger for CATS than for MCMC, also
in good agreement with the results obtained for the synthetic time series shown in
Fig. (6). Nevertheless, as the noise depends geometrically on −κ (only linearly on
σpl), and it is larger for MCMC, the uncertainties of the estimates from the MCMC
method are expected to be larger.
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Figs. 14d-f show the difference of MCMC and CATS estimating the white noise
amplitude σwn. For some time series where the estimated σwn is very small, CATS
considers it to be null, i.e. all the noise is a pure power-law process. These are the
points aligned at the vertical axis in all three Figs. 14d, 14e and 14f.

SometimeswhenCATS setsσwn to zero, it yields NaN values for the uncertainties
as it happens for the estimated East component velocity of THU3. The cause for this
is a bad numerical behaviour of the computed Fisher matrix4. Another consequence
of setting σwn = 0 is that it shifts −κ towards smaller values, thus diminishing the
correlation within the noise and underestimating the uncertainties of all parameters
of the model. Moreover, it makes σpl larger, as the results for the synthetic data
set suggested. As MCMC does not deal with derivatives these numerical issues are
avoided, and it performs well even with a combination of power-law and white noise.

Finally, Figs. 15, 16, and 17, which correspond to the correlation between esti-
mates for both methods, i.e. v, y0, Ac

1 yr , As
1 yr , Ac

0.5 yr and As
0.5 yr , respectively, show

that both methods are in good agreement.
As the aforementioned figures suggest, estimates from bothmethods seem to align

linearly, hence the consideration of a linear least-squares fit. Table 7 summarises the
fit of the points (after removing outliers beyond 3σ) showing the slope and the
ordinate for each parameter and all three components.

4 S.D.P. Williams, personal communication, 2013.
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Table 7: Parameter estimates for the LLS fit, as defined in Eq. 13, between MCMC
and CATS results for the estimates parameters (JPL data).

Parameter N E U
a b a b a b

−κ 0.94 0.16 0.85 0.25 0.80 0.26
σpl (mm) 0.99 -0.02 0.93 0.06 0.97 -0.03
v (mm/yr) 1.00 0.01 1.00 0.01 1.00 0.03
y0 (mm) 0.98 1.14 0.97 0.72 0.96 -0.35
Ac

1 yr
(mm) 1.04 -0.01 0.98 0.01 1.00 0.01

As
1 yr
(mm) 1.03 -0.02 1.00 -0.02 1.00 0.03

Ac
0.5 yr

(mm) 0.97 0.01 1.02 0.00 0.99 0.01
As

0.5 yr
(mm) 1.06 0.02 1.03 0.01 0.99 0.00

The slopes for v, σpl , Ac
1 yr , As

1 yr , Ac
0.5 yr and As

0.5 yr are a ∼ 1 which proves that
both methods perform alike at estimating these parameters. Their ordinate values
are at submillimetre level: b ∼ 10−2 mm/yr and b ∼ 10−2 mm, respectively.

The estimates of y0, though a ∼ 1, show differences at mm (North component in
Table 7) and sub-mm levels (East and Up components in Table 7).

The major differences are found among the −κ estimates. The slopes for −κ in
all components are a < 1, though the estimates from MCMC are larger. This is
because at low values, the differences are larger. This was found in the analysis of
the synthetic data set as well (see Figs. 6a and 7). Though it might be related to the
way CATS estimates the white noise, in this case this was not possible to confirm
because there were zero-white-noise values all along the diagonal of Figs. 13 and
14.

Uncertainties. The differences between both methods are shown in Fig. 18 for the
uncertainties of the estimates of v and y0, and Figs. 19 and 20 for the uncertainties in
the annual (σAc

1 yr
and σAs

1 yr
) and semi-annual (σAc

0.5 yr
and σAs

0.5 yr
) periodic terms,

respectively.
The uncertainties of the estimated spectral index −κ are not computed by the

public code of CATS, therefore they are not shown here. Similarly, as CATS yields
σσwn = NaN when σwn = 0 for some GPS time series, they are not plotted either.

In general, most of the uncertainties of v and the periodic terms are larger for
MCMC than for CATS. Figs. 18a-c, 19 and 20, show a linear correlation with most
of the values from MCMC above the diagonal. Only σy0 gets larger uncertainties for
CATS than for the MCMC method, as Figs. 18d-f show.

Table 8 summarises the values for the parameters of the LLS fit. The variety of
values for the slope a, indicates less agreement between the uncertainties of both
methods than their respective parameters had. The slope ranges from a = 0.51 for
the North component of σy0 , up to a = 1.35 (for the East component of σv).

The bias values range from 0.56 mm for the y0 Up component to 0.01 mm/yr for
velocity East component.
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Table 8: Parameter estimates of LLS fit, as defined in Eq. 13, for the MCMC and
CATS results for the parameter uncertainties (JPL data).

Parameter N E U
a b a b a b

σv (mm/yr) 1.00 0.09 1.35 0.01 0.93 0.16
σy0 (mm) 0.51 0.30 0.54 0.30 0.51 0.56
σAc

1 yr
(mm) 0.93 0.06 1.04 0.03 0.72 0.35

σAs
1 yr
(mm) 0.85 0.11 1.00 0.05 1.00 0.10

σAc
0.5 yr
(mm) 0.54 0.15 0.80 0.09 0.71 0.32

σAs
0.5 yr
(mm) 0.53 0.17 0.60 0.15 0.67 0.34

Table 9: Values of the medians of the ratio Rp (Eq. 14) and the difference ∆p (Eq.
15)of the uncertainties (JPL data).

Parameter N E U
Rp ∆p Rp ∆p Rp ∆p

σv (mm/yr) 1.40 0.08 1.40 0.08 1.18 0.08
σy0 (mm) 0.70 -0.43 0.72 -0.40 0.63 -1.34
σAc

1 yr
(mm) 1.07 0.02 1.06 0.02 1.06 0.05

σAs
1 yr
(mm) 1.09 0.03 1.09 0.03 1.07 0.06

σAc
0.5 yr
(mm) 1.11 0.03 1.08 0.02 1.06 0.05

σAs
0.5 yr
(mm) 1.09 0.03 1.09 0.02 1.06 0.05

Table 9 shows the median of the ratio and the difference of the uncertainties
for the JPL data set. The values for the ratios are quite similar to those obtained
for the synthetic time series (see Table 6), with Rv = 1.40 being the biggest value
(North and East components) and Ry0 = 0.63 the smallest one (Up component). The
periodic terms are also quite similar as their values range from 1.06 up to 1.11. The
most noticeable is that the median of the ratio of the velocities and periodic terms
are larger than 1 for all three components, meaning that, unlike the results for a,
the uncertainty estimates from MCMC are larger than those from CATS, namely
40% larger for the North and East components, and 18% for the Up component, thus
showing good agreement with the results for the synthetic data set.

The uncertainty of the estimated spectral index, σ−κ , is not computed by CATS.
This entails that CATS performs with one less parameter than the MCMC method,
therefore, smaller uncertainties for the velocity estimates are expected from CATS.
It is possible to check out this statement by setting −κ as an input for both methods.

Therefore, it is reasonable to state that the main difference in the velocity uncer-
tainties between both methods stems from the fact that CATS does not estimate the
uncertainty of the spectral index, and, by doing so, the velocity uncertainties for all
components are underestimated.
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On the other hand, CATS offers a quicker method than MCMC to estimate the
model parameters and their uncertainties: CATS is around one order of magnitude
faster than the MCMC method, therefore, if the difference in these uncertainties is
not measurable, i.e. (so far) at sub-millimetre level, CATS is more time-efficient than
MCMC.

Another argument in favour of the spectral index estimate (and its uncertainty)
is provided by the Bayesian Information Criterion (BIC) (Schwarz, 1978). This
criterion states the following: Given two models with different amount of parameters
to estimate, the BIC favours the one with the largest maximum likelihood estimate
(Lmax) and penalises the amount of parameters k, or, equivalently:

BIC = −2 log(Lmax) + k ln(N) (16)

where N is the amount of data. According to Eq. 16, the smaller the BIC value, the
better the model.

The BIC parameter is computed using the same method (firstly CATS, then
MCMC) on the JPL data set for two models: One that estimates −κ, and another
one that consider the spectral index as an input, namely, Flicker noise, i.e. −κ = 1.
Table 10 summarises the results for ∆ BIC = BICpl −BICFlicker , i.e. the difference
between the BIC value from the power-law model and that from the Flicker-noise
model. The second column shows that for 5% of the stations, in the North and
East components the power-law model provides a smaller BIC than the Flicker-
noise model. For the Up component 7% of the stations are better modelled with
Flicker noise, whereas for 30% of the stations both models are equivalent, i.e.
−2 < ∆ BIC < 0. A positive evidence, i.e. −6 < ∆ BIC < −2, (third column) is
shown for 54% of the stations in the North component, and 55% of them in the East
component. Again, the Up component shows a smaller percentage of 45%. Finally,
a strong evidence is found in the fourth column of Table 10 for 41%, 40% and 28%
of the stations for the North, East and Up components, respectively.

For the MCMC method it is assumed that the likelihood is Gaussian, then the
mean and the maximum of the likelihood would be similar and the BIC criterion
can be applied too. Table 11 shows the results for ∆ BIC for the power-law model
and the Flicker-noise model. For 2% and 1% of the stations in the North and East
components, respectively, the power-law and the Flicker-noise model are considered
equivalent (−2 < ∆BIC < 0, second column). There is positive evidence for 7%, 4%
and 4%, and strong evidence for 80%, 82% and 81% of the stations for the North,
East and Up components, respectively. The Flicker-noise model is better considered
for 11%, 13% and 15% of the stations for the North, East and Up components. The
results summarised in Tables 10 and 11 are in good agreement, denoting that for the
majority of the stations there is positive evidence in favour of the power-law model
for the MCMC and CATS methods.

To summarise:

• Both methods estimate parameters in good agreement as Tables 3 and 7 show.
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Table 10: Values of ∆ BIC ≡ BICpl for the North, East and Up components for a
power-law model and a Flicker-noise model using CATS (JPL data set).

−2 < ∆BIC < 0 −6 < ∆BIC < −2 ∆BIC < −6
N 5% 54% 41%
E 5% 55% 40%
U 30% 45% 28%

Table 11: Values of ∆ BIC ≡ BICpl for the North, East and Up components for a
power-law model and a Flicker-noise model using MCMC (JPL data set).

−2 < ∆BIC < 0 −6 < ∆BIC < −2 ∆BIC < −6
N 2% 7% 80%
E 1% 4% 82%
U 0% 4% 81%

• As the MCMC method simultaneously estimates all parameters, including the
spectral index, it yields [1.18 − 1.40] times larger uncertainties for the model
parameters than CATS (see Table 8).

• According to Tables 3, 7, and 6, 8, estimated parameters and their uncertainty
ratios for real data sets show great consistency with those for the synthetic data.

• TheBIC criterion denotes that the power-lawmodel is better than the Flicker-noise
model for most of the stations analysed with the MCMC and CATS methods.

• As a consequence of the BIC results, it is necessary to compute the spectral index
estimate uncertainty in order to get more realistic uncertainties for all model
parameters.

4.1.3 Computational Time

CATS computes the covariance matrix just once, and its computation is the most
memory-demanding computational process, thus slowing down the estimation pro-
cess. On the other hand, the MCMC method computes the covariance matrix for
each value of α within the Markov chain. Therefore, the MCMC method requires
more computational time. Indeed, Fig. 21 shows the difference between the CPU
time needed for the MCMC (red points) and the CATS (blue points) methods. These
are CPU times for each of GPS position time series from the JPL data set.

Both methods scale with the number of epochs as N−κ , where −κ = 2.5 for
MCMC, and −κ = 2.8 for CATS. CATS is around one order of magnitude faster
than the MCMC method. Therefore, if the difference in these uncertainties is not
measurable (at sub-millimetre level), CATS would be more time-efficient than the
MCMC method.
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Fig. 21: Computational time of the estimation of parameters with theMCMCmethod
(red) and CATS (blue) for the JPL data set.

With the development of faster implementations of the MLE method in more
recent versions of CATS or the Hector software (Bos et al., 2012), the computational
time is reduced even further than when we carried out this analysis. It is apparent that
the time requirement for the MCMC method in its current implementation would be
prohibitive for many applications.

4.2 Plate Motion Models

The analysis with MCMC and CATS carried out on the JPL position time series was
repeated on 171 GPS stations from JPL in order to estimate an absolute plate motion
model (PMM) for each method (MCMC-PMM and CATS-PMM for the MCMC and
CATS methods, respectively), thus assessing the performance of both methods and
how their differences would affect the constraints on plate motion models.

A comprehensive analysis on plate motion is beyond the scope of this chapter,
and the following subsections just show how the differences of these two statistical
methods lead to different constraints on any geophysical model, e.g. plate motion.
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4.2.1 Station selection

Following Altamimi et al. (2012) for the station selection criteria only those stations
far away from the plate boundaries andwithout significant glacial isostatic adjustment
were used. Listed in the second column in Tables 15 and 16 in Appendix A, 171
stations were used to estimate the PMM for each method.

Unlike Altamimi et al. (2012), where GPS, SLR, DORIS and VLBI techniques
were considered, only GPS stations were analysed herein, therefore some differences
are expected with respect to their results. Another consequence of not using the
same techniques is that the number of stations is different to Altamimi et al. (2012),
wherein 206 sites were analysed. Therefore small differences in the derived plate
motion models are expected.

4.2.2 Plate Motion Model Results

Station velocities and their 2σ uncertainties (black ellipses showing 95% confidence
level) from both methods are shown in Fig. 22. Both methods are in good agreement
with the North American plate moving westwards and Eurasia moving eastwards.
These two plates contain around 57% of sites. The Nubia and Somalia plates jointly
move north-eastwards. The South American plate has eight sites moving northwards
and Antartica shows more stability than the other plates, though the directions of the
vector velocities are more varied. The largest velocities are those on the Australian
(moving north-eastwards) and the Pacific (moving north-westwards) plates.

Tables 12 and 13 summarise the results for the PMM from the MCMC and CATS
methods, respectively. The first column in both Tables stands for the code of the
plates as it follows: AMUR for Amurian; ANTA for Antartica; ARAB for Arabia;
AUST for Australia; CARB for Caribbean; EURA for Eurasia; INDI for India; NAZC
for Nazca; NOAM for North America; NUBI for Nubia; PCFC for Pacific; SOAM
for South America; SOMA for Somalia, and SUND for Sunda.

The second column shows the number of stations (NS) on each plate, whereas the
next three columns summarise the results for angular velocities in the three directions
of the coordinate axes ωx , ωy and ωz .

The Euler pole components are in the sixth and seventh columns, respectively,
with the Euler pole angular velocity in the eighth column. Finally, the last two
columns summarise the weighted root mean square (WRMS) of the residuals for
each plate. The last line shows the global WRMS of the PMM considered for each
method.

Concerning the global WRMS, CATS-PMM gives 0.72 mm/yr and 0.80 mm/yr
for the North and East components, respectively; whereas MCMC-PMM gives
0.73 mm/yr and 0.76 mm/yr for the North and East components, respectively.

Taking into account all nine parameters involved, the RMS computed for the
MCMC is usually smaller than that for CATS as Fig. 23 shows for all components.
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Fig. 22: Site velocities from the MCMC (top panel) and CATS (bottom panel)
methods.

In this figure, the differences between theRMS for theMCMCand theCATSmethods
for all three components are shown. Systematically, for most of the stations analysed,
MCMC provides slightly better estimated parameters, though the differences for the
North and East components are at sub-millimetre level. As for the Up components,
there is almost no difference, as the histogram is centred around 0 mm with ∼ 90%
of the stations being in the range from −0.002 mm to 0.002 mm.

In general, the cartesian components of the angular velocities (3rd−5th columns)
for both methods are similar. Angular velocities for AMUR, ANTA, AUST, CARB,
INDI, NAZC, NUBI, SOAM and SOMA plates show good agreement at 1σ confi-
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dence level. For EURA only ωy from both methods agree at 1σ, whereas for SUND
ωx and ωy agree at the 1σ confidence level. Only for three plates, ARAB, NOAM
and PCFC, the estimated angular velocities disagree at 1σ.

In general, the uncertainties for the MCMC method are larger than for CATS.
This is consistent with previous results concerning the linear velocities obtained for
the synthetic and JPL time series. There are though, some exceptions, namely for
the AUST, EURA (all three components) and SUND (x and z components) plates.
These three plates also showed disagreements at the 1σ confidence level concerning
their angular velocities.

As for the Euler poles, all the previous plates which were in good agreement for
the angular velocities at the 1σ confidence level, show the same agreement for the
Euler pole coordinates and angular velocities, except for the SUNDplate. Concerning
ARAB, NOAM and PCFC, once more, they do not agree at 1σ confidence level.

Results for the angular velocity from the MCMC method are in good agreement
with the ITRF2008-PMM from Altamimi et al. (2012) (see Tab. 3 therein). All three
components of the angular velocities for the following plates are consistent with
each other at the 2σ (95%) confidence level: AMUR, ANTA, ARAB, AUST, NAZC,
NOAM, NUBI, PCFC, SOAM and SOMA. For the other plates, i.e. CARB, EURA,
INDI and SUND, at least two out of three components showed good agreement at
the 2σ confidence level.

The CATS-PMM showed larger differences than the MCMC-PMM with the
ITRF2008-PMM: only results for AMUR, ANTA, AUST, NAZC and SOAM agreed
at the 2σ confidence level. The uncertainties of MCMC-PMM, CATS-PMM and
ITRF2008-PMMwere at the same level of magnitude but those from the former two
methods showed more discrepancies with those from ITRF2008-PMM. The reason
for this is that ITRF2008 stems from the composition of different geodetic techniques
and uses a different number of sites.

In general, the reduced chi-square χ2
red
= r ′Cvv r/ f is computed as a tool to

compare models, where f = NS − NP is the number of degrees of freedom, with
NP being the number of plates.

For MCMC, χ2
red
∼ 501; whereas for CATS, χ2

red
∼ 802. The best model should

be that closer to the ideal value, i.e. χ2
red
= 1, thus each degree of freedom would

contribute with the same amount of uncertainty. In order to get a better model, i.e.
with more realistic uncertainties, the covariance matrix is rescaled in such a way
that χ2

red
= 1. Considering the χ2 values above for each model, uncertainties from

the MCMC method should be 22.4 times larger, and 28.3 times larger for the CATS
method. This would suggest that the uncertainties from the MCMC method are less
underestimated than those from CATS. The ratio of these two scale factors is ∼ 1.30,
which is consistent with the ratio of the uncertainties for the estimated velocities
from the synthetic and JPL data sets.
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Fig. 23: Differences in mm between RMS for MCMC and CATS methods for all
three components.

4.3 Gravity Time Series

Superconducting gravimeter data are measurements of the local relative variations of
the gravity field. These variations are derived from vertical displacements of a hollow
superconducting sphere that levitates in a persistentmagnetic field (Goodkind, 1999).
The gravity measurements at Membach, Belgium, provided by Olivier Francis and
Michel van Camp, are shown in Fig. 24. The time series of the drift-corrected data
spans from August 1995 until October 2011. For further details concerning the
measurements, please see Van Camp et al. (2005).

The trend of the time series provides information about changes in the gravity
field due to mass displacements, e.g. hydrological flows, and vertical displacements.
This time series is a good example of highly time-correlated noise and its influence
on estimating the trend and its uncertainty. Compared to the position time series
from GPS the variability in the gravity series relative to the magnitude of the trend
is significantly different. Therefore it provides an independent data set to evaluate
the MCMC method.
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Fig. 24: Gravity field measurements at Membach.

Table 14: Parameter estimates and uncertainties for the superconducting gravity
measurements at Membach station, Belgium.

−κ σpl (nm/s
2) v (nm/s2/yr) y0 (nm/s

2)

2.24 ± 0.02 3.40 ± 0.02 0.81 ± 0.12 3.72+0.64
−0.68

The analysis performed with MCMC yielded the results summarised in Table 14.
The model assumed was a linear combination of linear trend plus a time-correlated
noise process.

The first thing to note is the high value of the spectral index, −κ = 2.24. This
clearly indicates that the gravity time series contains a non-stationary process. A
similar result (−κ = 2.4) was already obtained from a shorter sample of the time
series which spanned to 2004 (Van Camp et al., 2005). It is a Random-Walk process,
meaning that the gravity field is randomly evolving in time due to stochastic changes
of mass distribution.

Fig. 25 shows the histogram of the estimated parameters. Figs. 25a and 25b show
that −κ and σpl , respectively, have Gaussian distributions.

The velocity although it does not seem Gaussian has an absolute maximum.
On the other hand, the ordinate y0 is multimodal. This is typical of non-stationary

stochastic processes, where the noise adds some velocity into the trend. This feature
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Fig. 25: Histograms for −κ, σpl , v and y0.

could be difficult to detect with an optimisation method as, for example, MLE as
implemented in CATS, as it could have ended up at any of the maxima, and not
necessarily at the absolute one.

The MCMC analysis of the time series of the superconducting gravity measure-
ments has shown another advantage of using an integrator method such as MCMC
rather than an optimisation method such as MLE. Due to the characteristics of the
algorithm, it explores the surrounding areas of a maximum, thereby spotting other
local maxima. This is the case for the ordinate parameter y0 (see Fig. 25d). This is
typical of non-stationary stochastic processes, where the noise adds some velocity
into the trend. Therefore, it is advisable to use the MCMC method for time series
with high spectral index, e.g. −κ ∼ 2.

4.4 Mean Sea Level Time Series

The third real data set to be analysed with the MCMC method were the monthly
mean sea level (MSL) records from the Revised Local Reference (RLR) data base
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Fig. 26: Monthly mean sea level at Andreia, Russian Federation.

provided by the Permanent Service for Mean Sea Level (PSMSL)5 (Holgate et al.,
2013).

For example, Fig. 26a shows the monthly MSL in mm from the tide gauge at
Andreia in theRussian Federation.While it is easily noticed that the time series differs
from a GPS position time series, this difference is less evident when comparing it
to the gravity time series in Fig. 24. This comparison suggest the presence of time-
correlated noise also in the MSL record which is confirmed when looking at the
power spectrum in Fig. 26b, showing a power-law spectrum. However, at the time of
this study the PSMSL did not provide a full stochastic analysis of the MSL records
and only considered white noise when estimating the parameters and associated
uncertainties. As this spectrum is not an isolated case, rather it is representative of
many stations in the PSMSL database, the PSMSL has updated its analysis strategy
recently, see https://www.psmsl.org/products/trends/methods.php. Nevertheless, for
demonstration purposes only we will use here the trend estimates from the PSMSL
assuming randomness.

Fig. 27 shows the distribution of all tide gauges contributing to the PSMSL as in
2014. The differences in coverage between the Northern and Southern Hemispheres

5 Data available at http://www.psmsl.org/
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Fig. 27: Distribution of PSMSL tide gauge stations as in 2014. (Reproduced from
https://www.psmsl.org.)

are clearly evident. Furthermore, it is known that most of the long MSL records
(40+ years) are located around Northern Europe and the Baltic Sea with a few
stations in North America, Asia and Australia.

In order to construct time series of sea level measurements at each station, the
monthly means have to be reduced to a common datum. This reduction is performed
by the PSMSLmaking use of the tide gauge datum history provided by the supplying
authority. To date, approximately two thirds of the stations in the PSMSL database
have had their data adjusted in this way, forming the RLR dataset. Only the RLR
data set was used in this analysis as suggested by the PSMSL.

The histogram of the time series lengths in Fig. 28 shows they span from a few
months to around 200 years, although the mode is suggested to be centred around
20 years.

Besides the annual and semi-annual periodic terms observed in GPS time series,
the MSL records are also influenced by other time-scale phenomena, some of them
spanning several years like theRossbywave propagation fromopen ocean towards the
shore (Douglas et al., 2001;Holgate andWoodworth, 2004), theElNiño phenomenon
in the Pacific Ocean (White et al., 2005; Church and White, 2006) or the 18.6 year
Lunar Nodal Cycle (Baart et al., 2012).

There are few sea level studies which have considered time-correlation within
the noise of the MSL records (Harrison, 2002; Mazzotti et al., 2008; Hughes and
Williams, 2010; Burgette et al., 2013), hence the interest of the MCMC analysis on
these time series.

Besides a purely scientific goal, sea-level rise is of importance nowadays due
to the socio-economic impact it will have on millions of people who live in coastal
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Fig. 28: Histograms for all the monthly RLR MSL records from PSMSL.

regions around the world. Projections of sea level for the 21st century help to prepare
governments and people in these regions. The projections have uncertainties which
depend to a degree on the noise within the time series, therefore, it is necessary to
understand the nature of this noise.

Like other geophysical time series, MSL records have a power-law spectrum
(Agnew, 1992; Harrison, 2002; Mazzotti et al., 2008). Nevertheless, so far it has not
been common to use models of white noise plus power-law in the analyses of MSL
records, with a few exceptions (Mazzotti et al., 2008; Hughes and Williams, 2010;
Burgette et al., 2013). In order to estimate the spectral index and its effect on the
estimated parameters and their uncertainties, an analysis using the MCMC method
implemented has been carried out on the MSL records provided by the PSMSL. As
in Hughes and Williams (2010), the chosen deterministic model includes linear plus
annual and semi-annual terms.

As Zhang et al. (1997); Mao et al. (1999) and Williams et al. (2004) showed
for GPS position time series, the hypothesis of a pure white noise process clearly
underestimates the uncertainties of the parameters. Moreover, unlike white noise,
long memory processes have a power-law spectrum and, consequently, as the am-
plitude changes in time, even the estimated parameters themselves may be different
(Harrison, 2002).
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Fig. 29: Estimates for −κ for monthly MSL records from the PSMSL RLR data base.

Therefore, differences coming from this analysis on the MSL time series are
expected, and they may affect conclusions of other applications where their trends
are used, as, for example, the computation of vertical landmovements fromGPS time
series for the correction of tide gauge records in sea level studies, e.g. Wöppelmann
et al. (2007).

Fig. 29 shows the distribution of the spectral index −κ for the MSL data set.
Clearly, most of their values do contain coloured noise. They are centred near
−κ = 1 (i.e. Flicker noise) and, in general, the value of −κ ranges from ∼ 0 to above
2, spanning the stationary and non-stationarity regimes. This is in good agreement
with Burgette et al. (2013) where they carried out an analysis on MSL records
from Australia with CATS, and found that most of the MSL spectrums fit either a
combination of white noise and power-law, or a First Order Gauss Markov process
(which is equivalent to a Random-Walk at middle frequency).

The empirical cumulative density function (ECDF) of −κ is shown in Fig. 30.
Most remarkable is that 99% of the MSL records have an −κ > 0.5, with 56% in
the interval [0.5 − 1) (stationary regimes) and 44% in the non-stationary regimes,
i.e. with −κ ≥ 1.
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In order to estimate the trends, only monthly MSL records longer than 30 years
were analysed, assuming most of the seasonal effects are sub-monthly (therefore they
are filtered out), semi-annual and annual, though there are still some discrepancies
about oscillations of longer periods within the time series (Chambers et al., 2012).
According to Woodworth et al. (1999, 2009) and cites therein, this is the length
required to estimate sea level trends with a standard error of the order of 0.5 mm/yr
or less.

A histogram of the estimated velocity v is shown in Fig. 31. Although most of
the estimated values are centered around v = 1mm/yr , they range from −10 mm/yr
to 10 mm/yr , with some extreme cases at −20 mm/yr and 20 mm/yr . The median
is vmed = 1.26 mm/yr and vmed = 1.41 mm/yr for the MCMC and PSMSL cases,
respectively. Their differences in their standard deviation are also sub-millimetre,
namely σv = 3.21 mm/yr and σv = 2.83 mm/yr for MCMC and PSMSL, respec-
tively. As these values are corresponding to sea level variations potentially affected
by vertical land movements, they cannot be compared with a globally averaged sea
level rise estimate.
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Fig. 31: Estimates of v for monthly MSL records from the PSMSL RLR data base.

Finally, the uncertainties of the estimated v from the MCMC method are shown
in Fig. 32. Although the estimates range from 0 to 35 mm/yr , they cluster at the few
millimetre level, mainly between 0 and 5 mm/yr .

In order to compare the results from the MCMC analysis with the values from
PSMSL (white noise model), the same stations for which the trends are given in
the PSMSL web page6 were selected. Fig.33 shows the differences. In the vertical
axis, the estimates from MCMC (coloured noise hypothesis); in the horizontal axis,
white noise model is assumed. Although most of them align along the diagonal,
there are some noticeable differences with some points around (5, 17)mm/yr and
(5,−20)mm/yr . It is worth mentioning that most of the distant points from the
diagonal have −κ ≥ 1 (red-circled points in Fig. 33), i.e. indicating non-stationary
processes. This is in good agreement with the fact that such processes, i.e. those for
which −κ ≥ 1, contribute to the velocity. This could be the reason for those extreme
values below the diagonal, as the velocity from the long-memory process could be
negative. Moreover, as it was explained in Harrison (2002), due to the power-law
spectrum, as the perturbations at low-frequency are included with longer time series,
they naturally contribute to increase the estimated velocity.

6 Data available at http://www.psmsl.org/



52 Markov Chain Monte Carlo

0 5 10 15 20 25 30 35

50

100

150

200

250

300

σ
v
 (mm/yr)

C
o

u
n

ts

Fig. 32: Estimates of σv for monthly MSL records from the PSMSL RLR data base.

The uncertainties from both methods are compared in Fig. 34. In general, as
expected with a few exceptions, the estimates from MCMC are larger than those
from the PSMSL model, i.e. they are well above the diagonal. A plot of the ECDF of
the ratio of both uncertainties Rσv ≡ σv(MCMC)/σv(PSMSL) in Fig. 35 provides
more information. Around 87% of the uncertainties estimated by theMCMCmethod
are larger than those from the PSMSL model. Moreover, 86% of the uncertainties
estimated with the MCMC method are [1 − 10] times larger than those obtained
with a pure white-noise model.

According to these results, to consider a coloured noise instead of white noise
model, and analyse the monthly MSL records with the MCMC model, yields some
quantitative differences, namely:

• Due to the contribution of the non-stationary noise to the trend of some MSL
records larger absolute velocities are estimated (see Fig. 33).

• 86% of the stations have uncertainties which are [1 − 10] times larger than those
from the white noise model.
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Fig. 33: Estimates for v (mm/yr) fromMCMCvs PSMSLmodels. Red-circled points
stem from MSL records with −κ ≥ 1.

The uncertainties here just consider the effect from the coloured noise. Corrections
with GPS velocities would increase the uncertainty of any “averaged” sea level
change estimate (Wöppelmann et al., 2007, 2009; Santamaría-Gómez et al., 2012).

The MCMC analysis carried out on the monthly MSL records available in the
PSMSL RLR data base confirms that the assumption of white noise, as it was
considered in the past, does not hold for these either. Most of the time series have
−κ ∼ 1 (see Fig. 29), and around 3% of them have −κ ≥ 2 (see Fig 30). Moreover,
44% of them are non-stationary as their spectral indices are −κ ≥ 1. Consequently,
different velocities were found with the coloured noise model (see red-circled points
in Fig. 33).
Once again, the uncertainties from the MCMC method are larger as Fig. 34 shows.
Actually, around 86% of the MSL records analysed with MCMC have uncertainties
[1 − 10] times larger than for the white noise-only model.

Moreover, the analysis of MSL records has shown that a pure white-noise model
underestimates the uncertainties ([1 − 10] times smaller). Unlike for the analysis
of GPS time series, the range of the ratio for the uncertainties is very wide, hence
the lack of any transformation method. Therefore, the authors suggest to analyse all
MSL records with the MCMC method.
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Fig. 34: Estimates for σv (mm/yr) from MCMC vs PSMSL models.

The different trends estimated for some MSL records are the consequence of the
contribution of the non-stationary power-law noise, i.e. those for which −κ ≥ 1.
Indeed, if the model used to fit the records does not contain any velocity term that
comes from the noise it will yield an underestimated spectral index.

The analysis with the MCMC method carried out on the MSL records from the
PSMSL RLR data set shows that considering coloured noise instead of a pure white
noise model yields some quantitative differences, namely:

• Larger absolute velocities due to the contribution of the non-stationary processes
to the trend (see Fig. 33).

• Larger uncertainties which are [1 − 10] times larger than those from the white
noise model for 86% of the analysed MSL records. This is a similar range as was
stated for GPS time series in Mao et al. (1999).

From these results it is advisable to take into account the temporally-correlated
noise within the MSL records, otherwise, it would yield biased estimated trends and
underestimated uncertainties for sea level studies.
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5 Summary

In order to better constrain geophysical models using time series of geodetic obser-
vations, e.g., GPS-derived positions, superconducting gravity and mean sea level,
it is necessary to have an estimate of the stochastic properties of the series. Due to
the fractal nature of different geophysical phenomena (Agnew, 1992; Mandelbrot,
1982), both the deterministic and stochastic models have to be estimated and the a
priori assumption of white noise is no longer valid. Doing so would underestimate
the uncertainties of the parameter estimates (Zhang et al., 1997; Mao et al., 1999;
Williams, 2003a; Williams and Willis, 2006). Moreover, even the trend of the time
series, which provides insight about geophysical variable rates, could be affected
should the noise be non-stationary (Harrison, 2002).

In this regardmethods, such as the presentedMarkovChainMonteCarlo (MCMC)
method, that provide a sample of the distribution function of the parameters and the
noise are valid for geodetic time series of stochastic phenomena.

In this chapter several examples as to how to implement statistical analysis of
geodetic time series by means of the MCMC method have been presented, namely,
GPS position time series (with synthetic and real data sets), superconducting gravity
time series and mean sea level records. Furthermore, the impact of the MCMC-
derived GPS station velocities and uncertainties on constraints of plate motion mod-
els was demonstrated.

The results from synthetic data prove that the MCMC method performs well. In
general, the true values are within the 1σ confidence level. It can also be stated from
those results that the wider the parameter space, i.e. the more parameters, the larger
the uncertainties.

The MCMC method provides samples of the distributions of the estimates, thus
through histograms it is easy to obtain statistical information about them as, for
example, the mean, the median, the uncertainties at different confidence levels, and
the cross-correlation between them.

It has also been noted that the MCMC method seems to be a good estimator for
non-stationary time series, though without giving a mathematical proof for this in
this study.

According to Fig. 7, CATS performs alike in the non-stationary regime, though
at low values provides biased −κ estimates as a consequence of setting σwn to zero
when it is difficult for the estimator to distinguish one noise source from the other.

Another advantage of MCMC upon CATS is that the former does not deal with
derivatives of the covariance matrix as, for example, the Fisher matrix, thus avoiding
numerical issues present in some results from CATS (e.g. a NaN for the uncertainty
of the East component velocity for THU3).

The analysis carried out on the synthetic data leads to the following conclusions:

• Overall, themodel parameter estimates from bothmethods are in good agreement.
• The MCMC method estimates similar σpl and larger −κ, σwn with smaller RMS

than CATS.
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• The MCMC method provides larger uncertainties for the model parameters, e.g.
σv(MCMC) ∼ 1.40 × σv(CATS).

• Though the correlation parameters a and b are useful to transform estimates from
one method into the other, in the order to compare both methods, it is better
(more robust) to compute the median than the mean, since the latter is more
easily corrupted by the presence of outliers.

The larger estimates for the spectral index −κ fromMCMC than from CATS indicate
that, according to theMCMCmethod, there is more time-correlation within the noise
than what CATS suggests. On the other hand, the values of σpl obtained from CATS
are overestimated, for, even though they are larger than those fromMCMC, the RMS
for σpl from CATS is ∼ 20% larger than that for the MCMC estimate.

Finally, the RMS of the estimates of the white noise amplitude σwn from the
MCMC method is around half the value of its counterpart from CATS. CATS
sets σwn to zero for low values of −κ (red-circled points in various figures), thus
underestimating the temporal-correlation within the time series and, consequently,
underestimating the uncertainties of the model parameters as well. Despite of the
larger values for σpl from CATS than from MCMC, as σv increases geometrically
with larger −κ and linearly with the power amplitude, the larger −κ estimates from
MCMC lead to larger uncertainties for the velocity estimate.

Concerning the uncertainties for the other model parameters, y0 is smaller Ry0 =

0.70 for MCMC than for CATS, and the periodic terms have uncertainties that range
between 1.03 and 1.08 times larger for theMCMC than for the CATSmethod. Except
for σv and σy0 with ∆v = 0.23 mm/yr and ∆y0 = −0.88 mm, the differences of the
periodic terms are sub-millimetre.

Results obtained from the JPL data set are in good agreement with those for
the synthetic data. As the estimated −κ are larger for the MCMC method than for
CATS, the former method yields larger uncertainties for the parameters of the model.
Namely, for the uncertainties of the estimated velocity of the JPL data sets

• σv(MCMC) ∼ [1.18 − 1.40] × σv(CATS), which is in good agreement with the
results for the synthetic data set.

Similar results are obtained for the estimates of the amplitudes of the periodic
terms in the JPL time series. All the uncertainties are larger for the MCMC than
for the CATS method. In general, the uncertainties are 1.03 − 1.11 times larger for
MCMC than for CATS. This is in consistent with the results from the synthetic data
set too.

Finally, as the estimates of both methods cluster along a straight line, a method to
transform estimated parameters and uncertainties from CATS to MCMC has been
introduced. Nevertheless, it is a more robust method to use the median of the ratio
and of the differences instead of the mean.

Constraints of Plate MotionModels is another example of applications of MCMC
methods for geodetic time series. Both methods, i.e. MCMC and CATS, yield results
with differences at 1σ confidence level. Such differences may imply different values
for the constraints in geophysical models. Moreover, according to the reduced χ2,
the MCMC method yields less underestimated uncertainties than CATS, as the
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uncertainties of the former should be 22.4 times larger, whereas for the latter they
should be 28.3 larger, in order to get the best fit possible, i.e. χ2 = 1.

The MCMC analysis of the time series of the superconducting gravity measure-
ments has shown another advantage of using an integrator method such as MCMC.
Due to the characteristics of the algorithm, it explores the surrounding areas of a
maximum, thereby spotting other local maxima. This is the case for the ordinate
parameter y0 of the gravity time series. This is typical of non-stationary stochas-
tic processes, where the noise adds some velocity into the trend. Therefore, it us
suggested to use the MCMC method in time series with high spectral index, e.g.
−κ > 1.

Finally, the analysis of tide gauge records has confirmed other findings that in
order to take into account the temporally-correlated noise within the series, it is
necessary to estimate the spectral index and its uncertainty, otherwise it may yield
biased trend estimates and underestimated uncertainties for sea level studies.
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Appendices

The appendices first present the station-specific information used in the plate motion
model estimation with the horizontal station velocities from both the MCMC and
CATS methods as described in Section 4.2. Then in a second appendix a cross-
evaluation of theMCMC and Hector methods using the Benchmark Synthetic GNSS
(BSG) time series (Chapter 2 of this book) is detailed and discussed.

A Station Information for Plate Motion Model Estimation
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Table 15: Station Information and Velocity Estimates from the MCMC method.

Station Horizontal Velocities (mm/yr) Residuals (mm/yr)
Plate ID λ (deg) φ (deg) VN VE σVN σVE N E
Amurian CHAN 125.44 43.79 −12.71 26.24 1.22 0.33 1.81 0.97
Amurian KHAJ 135.05 48.52 −13.63 21.65 0.29 0.14 1.08 0.02
Antartica SYOG 39.58 −69.01 2.89 −4.04 0.07 0.08 −0.03 0.04
Antartica DAV1 77.97 −68.58 −5.29 −3.10 0.07 0.21 −0.19 0.11
Antartica CAS1 110.52 −66.28 −10.03 1.86 0.14 0.13 0.26 0.07
Antartica DUM1 140.00 −66.67 −11.42 9.54 0.39 1.06 0.82 2.45
Antartica VESL −2.84 −71.67 10.28 −0.30 0.09 0.06 0.09 0.01
Arabia HALY 36.10 29.14 22.59 26.73 0.79 0.57 −1.77 1.07
Arabia BHR2 50.61 26.21 30.04 31.39 0.14 0.21 0.39 0.62
Arabia YIBL 56.11 22.19 31.57 32.97 0.21 0.30 0.39 −1.24
Australia YAR1 115.35 −29.05 57.30 39.02 0.31 0.50 −1.19 −0.83
Australia NNOR 116.19 −31.05 57.94 38.41 0.54 0.16 −0.73 −0.72
Australia KARR 117.10 −20.98 58.36 38.93 0.20 0.12 −0.53 −0.89
Australia DARW 131.13 −12.84 59.28 36.23 0.14 0.20 −0.60 −0.40
Australia CEDU 133.81 −31.87 58.81 29.08 0.18 0.20 −0.81 −0.28
Australia ALIC 133.89 −23.67 59.67 32.11 0.32 0.11 0.03 −0.54
Australia ADE1 138.65 −34.73 58.35 24.98 0.18 0.21 −0.53 −0.24
Australia TOW2 147.06 −19.27 55.77 28.86 0.14 0.11 −0.90 −0.89
Australia HOB2 147.44 −42.80 55.70 14.40 0.34 0.05 −0.77 −0.24
Australia PARK 148.26 −33.00 52.97 18.92 0.41 0.45 −3.24 −1.98
Australia TIDB 148.98 −35.40 55.26 18.26 0.13 0.11 −0.68 −0.62
Australia STR1 149.01 −35.32 55.31 18.65 0.18 0.10 −0.62 −0.27
Australia SYDN 151.15 −33.78 54.27 18.06 0.42 0.22 −0.82 −0.76
Australia SUNM 153.04 −27.48 54.06 21.91 0.34 0.50 −0.23 −0.44
Australia KOUC 164.29 −20.56 47.73 22.75 0.21 0.30 −0.58 −0.74
Australia NOUM 166.41 −22.27 45.77 20.57 0.29 0.18 −1.19 −0.85
Australia AUCK 174.83 −36.60 39.74 4.52 0.11 0.14 −1.23 −0.32

Continued on next page –
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Table 15 – continued from previous page
Station Horizontal Velocities (mm/yr) Residuals (mm/yr)

Plate ID λ (deg) φ (deg) VN VE σVN σVE N E
Caribbean CRO1 −64.58 17.76 13.57 10.79 0.10 0.33 0.04 −1.69
Eurasia HERS 0.34 50.87 16.41 16.50 0.17 0.17 −0.04 −0.36
Eurasia EBRE 0.49 40.82 15.81 19.84 0.14 0.08 −0.64 0.66
Eurasia SHEE 0.74 51.45 16.65 16.71 0.29 0.09 0.23 −0.09
Eurasia BELL 1.40 41.60 15.79 19.56 0.29 0.10 −0.60 0.35
Eurasia TOUL 1.48 43.56 16.85 20.01 0.49 0.44 0.47 1.19
Eurasia OPMT 2.33 48.84 15.72 18.15 0.13 0.10 −0.59 0.35
Eurasia MALL 2.62 39.55 16.21 19.82 0.19 0.23 −0.09 0.00
Eurasia SJDV 4.68 45.88 16.06 19.47 0.09 0.09 −0.06 0.52
Eurasia REDU 5.14 50.00 15.57 18.29 0.12 0.14 −0.51 0.17
Eurasia MARS 5.35 43.28 15.96 20.07 0.08 0.09 −0.11 0.45
Eurasia KOSG 5.81 52.18 16.04 17.96 0.08 −0.00 0.02 0.22
Eurasia WSRT 6.60 52.91 16.41 17.64 0.10 0.06 0.48 −0.09
Eurasia BORK 6.75 53.56 15.22 17.58 0.25 0.10 −0.71 −0.03
Eurasia WAB2 7.46 46.92 15.84 19.87 0.12 0.13 −0.02 0.57
Eurasia ZIMM 7.47 46.88 16.23 19.59 0.10 0.05 0.37 0.29
Eurasia IENG 7.64 45.02 15.44 20.47 0.15 0.13 −0.40 0.75
Eurasia HELG 7.89 54.17 15.89 17.57 0.09 0.14 0.08 −0.14
Eurasia AJAC 8.76 41.93 16.42 21.44 0.10 0.30 0.69 0.93
Eurasia PTBB 10.46 52.30 15.55 18.81 0.11 0.08 0.02 0.08
Eurasia WARN 12.10 54.17 15.58 18.32 0.11 0.08 0.25 −0.32
Eurasia BUDP 12.50 55.74 14.92 18.05 0.16 0.07 −0.36 −0.30
Eurasia WTZR 12.88 49.14 15.56 20.39 0.07 0.08 0.32 0.46
Eurasia POTS 13.07 52.38 15.57 19.16 0.23 0.11 0.36 −0.09
Eurasia SASS 13.64 54.51 14.65 19.02 0.20 0.08 −0.48 0.13
Eurasia GOPE 14.79 49.91 15.10 19.99 0.15 0.12 0.11 −0.16
Eurasia GRAZ 15.49 47.07 15.38 21.74 0.11 0.00 0.49 0.90
Eurasia WROC 17.06 51.11 14.69 20.18 0.10 0.07 0.02 −0.17
Eurasia BOR1 17.07 52.28 14.58 20.01 0.06 0.08 −0.08 −0.10

Continued on next page –
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Table 15 – continued from previous page
Station Horizontal Velocities (mm/yr) Residuals (mm/yr)

Plate ID λ (deg) φ (deg) VN VE σVN σVE N E
Eurasia PENC 19.28 47.79 14.67 22.15 0.16 0.07 0.34 0.73
Eurasia LAMA 20.67 53.89 14.26 20.10 0.56 0.08 0.16 −0.38
Eurasia JOZE 21.03 52.10 14.39 21.03 0.10 0.07 0.34 0.10
Eurasia BOGO 21.04 52.48 14.42 20.47 0.15 0.02 0.38 −0.38
Eurasia KLPD 21.12 55.72 13.36 20.11 0.48 0.53 −0.67 −0.06
Eurasia UZHL 22.30 48.63 13.90 21.84 0.10 0.13 0.06 0.02
Eurasia SULP 24.01 49.84 13.96 21.45 0.13 0.14 0.41 −0.47
Eurasia RIGA 24.06 56.95 13.44 20.17 0.09 0.00 −0.09 −0.31
Eurasia GLSV 30.50 50.36 12.83 22.38 0.11 0.12 0.51 −0.57
Eurasia MIKL 31.97 46.97 12.03 23.53 0.19 0.15 0.01 −0.17
Eurasia CRAO 33.99 44.41 11.43 24.00 0.22 0.67 −0.17 −0.32
Eurasia KHAR 36.24 50.01 11.93 24.25 0.23 0.25 0.83 0.35
Eurasia MOBN 36.57 55.11 11.83 22.77 0.16 0.24 0.81 −0.32
Eurasia ZECK 41.57 43.79 11.72 26.00 0.08 0.17 1.84 0.62
Eurasia ARTU 58.56 56.43 6.23 24.97 0.10 0.18 0.80 −0.52
Eurasia NVSK 83.24 54.84 −1.44 25.80 1.12 0.95 0.30 −0.60
Eurasia KSTU 92.79 55.99 −4.68 25.43 0.53 0.00 −0.18 −0.38
Eurasia CASC −9.42 38.69 16.78 17.85 0.08 0.09 −0.09 0.05
Eurasia TORS −6.76 62.02 17.62 10.43 0.33 0.64 0.83 −1.45
Eurasia NEWL −5.54 50.10 16.46 15.76 0.15 0.13 −0.30 0.01
Eurasia BRST −4.50 48.38 16.82 16.77 0.13 0.09 0.10 0.33
Eurasia MADR −4.25 40.43 16.08 18.33 0.23 0.28 −0.63 −0.05
Eurasia VILL −3.95 40.44 16.41 18.64 0.14 0.00 −0.29 0.20
Eurasia CANT −3.80 43.47 16.17 18.39 0.01 0.08 −0.52 0.60
Eurasia YEBE −3.09 40.52 16.28 18.72 0.09 0.15 −0.38 0.14
Eurasia MORP −1.69 55.21 16.92 15.35 0.23 0.24 0.35 0.12
Eurasia NSTG −1.44 55.01 16.18 17.30 0.13 0.59 −0.38 1.96
Eurasia HRM1 −1.28 51.45 16.44 16.34 0.12 0.00 −0.11 −0.01
Eurasia LROC −1.22 46.16 16.26 18.09 0.38 0.10 −0.30 0.41

Continued on next page –
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Table 15 – continued from previous page
Station Horizontal Velocities (mm/yr) Residuals (mm/yr)

Plate ID λ (deg) φ (deg) VN VE σVN σVE N E
Eurasia ALAC −0.48 38.34 16.74 21.43 0.15 0.59 0.22 1.94
Eurasia CHIZ −0.41 46.13 16.25 18.36 0.07 0.12 −0.26 0.50
Eurasia NPLD −0.34 51.42 15.92 17.07 0.22 0.14 −0.58 0.50
Eurasia VALE −0.34 39.48 16.09 19.82 0.09 0.13 −0.41 0.52
India MALD 73.53 4.19 34.05 42.92 0.35 0.59 0.17 −0.62
India HYDE 78.55 17.42 34.32 41.04 0.24 0.38 0.00 −0.01
Nazca EISL −109.38 −27.15 −6.74 67.09 0.35 0.32 −1.05 −1.09
Nazca GALA −90.30 −0.74 10.86 51.30 0.64 0.48 −0.31 −0.12
Nazca GALA −90.30 −0.74 10.86 51.30 0.64 0.48 −0.31 −0.12
N. America PUC1 −110.81 39.60 −8.30 −14.13 0.09 0.11 −0.03 −0.18
N. America NISU −105.26 40.00 −5.97 −14.97 0.36 0.45 0.39 −0.48
N. America AMC2 −104.52 38.80 −5.69 −14.39 0.11 −0.00 0.41 −0.14
N. America MDO1 −104.01 30.68 −5.75 −11.98 0.18 0.14 0.17 0.13
N. America SUM1 −102.51 34.83 −6.00 −13.06 1.36 0.28 −0.61 0.27
N. America AUS5 −97.76 30.31 −2.72 −11.44 0.25 0.26 0.96 0.83
N. America PATT −95.72 31.78 −2.54 −12.75 0.10 0.19 0.40 0.01
N. America ANG1 −95.49 29.30 −1.76 −11.71 0.20 0.61 1.10 0.32
N. America WNFL −92.78 31.90 −1.86 −12.20 0.17 0.11 0.01 0.65
N. America NLIB −91.57 41.77 −1.33 −15.23 0.13 0.09 0.10 0.30
N. America MIL1 −87.89 43.00 0.10 −14.97 0.04 0.25 0.18 0.90
N. America MLF1 −87.39 32.09 0.45 −13.03 0.24 0.37 0.35 −0.08
N. America STB1 −87.31 44.80 −1.02 −16.13 0.19 0.10 −1.16 0.17
N. America UNIV −84.39 42.29 1.02 −15.61 0.12 0.12 −0.18 0.06
N. America LEBA −84.28 39.43 1.58 −14.85 0.10 0.14 0.34 0.10
N. America BAYR −83.89 43.45 0.87 −16.10 0.10 0.14 −0.52 −0.16
N. America MCN1 −83.56 32.70 1.76 −13.23 0.16 0.14 0.25 −0.14
N. America ASHV −82.55 35.60 2.15 −14.13 0.18 0.15 0.27 −0.24
N. America MCD1 −82.53 27.85 1.20 −10.98 0.29 0.24 −0.69 0.67
N. America SAV1 −81.70 32.14 2.42 −12.62 0.12 0.13 0.23 0.29

Continued on next page –
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Table 15 – continued from previous page
Station Horizontal Velocities (mm/yr) Residuals (mm/yr)

Plate ID λ (deg) φ (deg) VN VE σVN σVE N E
N. America CCV3 −80.55 28.46 2.98 −12.48 0.26 0.31 0.37 −0.69
N. America CHA1 −79.84 32.76 3.28 −12.93 0.19 0.43 0.41 0.11
N. America PSU1 −77.85 40.81 3.66 −15.18 0.17 0.08 0.07 −0.06
N. America GODE −76.83 39.02 4.07 −14.68 0.06 0.08 0.11 −0.05
N. America GLPT −76.50 37.25 4.00 −14.36 0.32 0.16 −0.08 −0.21
N. America HNPT −76.13 38.59 4.54 −14.66 0.42 0.66 0.32 −0.17
N. America DUCK −75.75 36.18 4.25 −13.93 0.19 0.30 −0.09 −0.09
N. America VIMS −75.69 37.61 4.82 −14.00 0.08 0.08 0.45 0.22
N. America DNRC −75.52 39.16 4.05 −15.19 0.11 0.25 −0.38 −0.58
N. America CHL1 −75.09 38.78 4.02 −14.63 0.19 0.20 −0.57 −0.15
N. America WES2 −71.49 42.61 5.40 −15.12 0.14 0.07 −0.46 0.09
N. America NPRI −71.33 41.51 5.67 −15.09 0.10 0.11 −0.25 −0.15
N. America BARH −68.22 44.40 6.72 −15.22 0.08 0.09 −0.28 0.14
N. America EPRT −66.99 44.91 7.26 −15.42 0.08 0.06 −0.17 −0.05
N. America UNB1 −66.64 45.95 7.13 −15.78 0.42 0.40 −0.42 −0.22
N. America BRMU −64.70 32.37 8.85 −11.81 0.20 0.37 0.63 0.33
N. America HLFX −63.61 44.68 8.67 −15.22 0.10 0.16 0.09 −0.23
Nubia WIND 17.09 −22.57 19.98 18.73 0.37 0.19 0.72 −1.26
Nubia SIMO 18.44 −34.19 19.40 16.56 0.20 0.38 0.23 −0.43
Nubia SUTH 20.81 −32.38 19.11 16.76 0.11 0.18 0.10 −0.29
Nubia LPAL −17.89 28.76 16.99 16.50 0.34 0.33 −0.60 0.41
Nubia DAKA −17.47 14.68 14.12 21.38 0.58 0.85 −3.54 1.27
Nubia MAS1 −15.63 27.76 17.63 16.65 0.16 0.17 −0.28 −0.08
Nubia GOUG −9.88 −40.35 18.72 21.37 0.82 0.26 0.14 0.04
Pacific MCIL 153.98 24.29 24.19 −71.71 0.30 0.37 0.57 −0.05
Pacific POHN 158.21 6.96 25.46 −70.19 0.30 0.41 −0.01 −0.77
Pacific NAUR 166.93 −0.55 30.02 −67.01 0.14 0.22 1.22 −0.18
Pacific KWJ1 167.73 8.72 29.17 −68.59 0.35 0.74 0.09 0.59
Pacific KIRI 172.92 1.35 31.07 −67.69 0.23 0.23 0.35 −0.29

Continued on next page –
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Table 15 – continued from previous page
Station Horizontal Velocities (mm/yr) Residuals (mm/yr)

Plate ID λ (deg) φ (deg) VN VE σVN σVE N E
Pacific TUVA 179.20 −8.53 32.45 −63.91 0.13 0.25 0.10 0.44
Pacific CHAT −176.57 −43.96 33.21 −40.59 0.13 0.15 0.02 0.29
Pacific FALE −172.00 −13.83 33.26 −63.48 0.08 0.23 −0.74 −0.31
Pacific SAMO −171.74 −13.85 33.43 −64.29 0.16 0.33 −0.61 −1.09
Pacific ASPA −170.72 −14.33 34.15 −63.16 0.11 0.27 −0.02 −0.01
Pacific CKIS −159.80 −21.20 35.40 −62.74 0.18 0.54 0.46 −0.49
Pacific KOK1 −159.76 21.98 33.52 −61.97 0.87 0.51 −1.41 0.49
Pacific KOKB −159.66 22.13 34.63 −62.28 0.13 0.20 −0.31 0.11
Pacific LHUE −159.34 21.98 35.50 −61.52 1.49 0.52 0.56 0.84
Pacific HNLC −157.86 21.30 34.84 −62.52 0.41 0.17 −0.10 −0.20
Pacific UPO1 −155.88 20.25 35.69 −67.78 0.51 0.80 0.79 −5.43
Pacific MKEA −155.46 19.80 34.86 −62.19 0.10 0.15 −0.06 0.30
Pacific HILO −155.05 19.72 38.72 −62.45 0.68 0.46 3.84 −0.04
Pacific THTI −149.61 −17.58 34.42 −65.40 0.18 0.29 −0.10 0.16
Pacific GUAX −118.29 28.88 26.05 −47.68 0.74 0.69 −0.60 0.20
S. America BUE2 −58.52 −34.57 12.48 −0.65 1.51 0.23 1.05 1.17
S. America LPGS −57.93 −34.91 11.76 −0.95 0.10 0.13 0.29 0.90
S. America LKTH −57.85 −51.70 12.33 0.34 0.51 0.38 0.86 0.32
S. America KOUR −52.81 5.25 12.62 −5.21 0.12 0.08 0.81 0.14
S. America UEPP −51.41 −22.12 12.76 −3.22 0.35 0.24 0.89 0.47
S. America PARA −49.23 −25.45 12.16 −3.54 0.19 0.34 0.19 0.08
S. America NEIA −47.92 −25.02 12.71 −2.38 0.24 0.20 0.69 1.39
S. America BRAZ −47.88 −15.95 12.61 −4.22 0.13 0.17 0.59 0.13
S. America FORT −38.43 −3.88 12.35 −4.21 0.16 0.30 0.15 0.88
S. America ASC1 −14.41 −7.95 11.15 −5.21 0.20 0.26 0.01 0.51
Somalia MALI 40.19 −3.00 16.31 26.78 0.20 0.26 −0.65 1.83
Somalia REUN 55.57 −21.21 12.51 16.59 0.18 0.31 −0.99 −1.89
Sunda NTUS 103.68 1.35 −5.24 30.76 0.14 0.18 −0.00 0.01
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Table 16: Station Information and Velocity Estimates from the CATS method.

Station Horizontal Velocities (mm/yr) Residuals (mm/yr)
Plate ID λ (deg) φ (deg) VN VE σVN σVE N E
Amurian CHAN 125.44 43.79 −11.67 26.12 0.56 0.19 2.43 1.24
Amurian KHAJ 135.05 48.52 −13.62 21.66 0.22 0.09 1.14 0.04
Antartica SYOG 39.58 −69.01 2.90 −4.05 0.06 0.06 −0.02 −0.04
Antartica DAV1 77.97 −68.58 −5.26 −3.06 0.06 0.13 −0.25 0.10
Antartica CAS1 110.52 −66.28 −9.99 1.85 0.08 0.11 0.16 0.08
Antartica DUM1 140.00 −66.67 −11.41 8.52 0.32 1.04 0.67 1.52
Antartica VESL −2.84 −71.67 10.27 −0.25 0.08 0.07 0.19 0.00
Arabia HALY 36.10 29.14 22.96 26.81 0.17 0.28 −2.07 −0.04
Arabia BHR2 50.61 26.21 30.25 31.25 0.08 0.13 1.57 −0.37
Arabia YIBL 56.11 22.19 31.37 33.40 0.11 0.26 1.77 −1.12
Australia YAR1 115.35 −29.05 57.31 39.12 0.24 0.25 −0.87 −0.13
Australia NNOR 116.19 −31.05 57.92 38.41 0.07 0.09 −0.43 −0.12
Australia KARR 117.10 −20.98 58.38 38.92 0.08 0.06 −0.18 −0.32
Australia DARW 131.13 −12.84 59.22 35.91 0.10 0.30 −0.25 −0.20
Australia CEDU 133.81 −31.87 58.78 29.11 0.09 0.10 −0.41 0.28
Australia ALIC 133.89 −23.67 59.10 32.10 0.06 0.07 −0.11 −0.00
Australia ADE1 138.65 −34.73 58.38 24.95 0.11 0.13 −0.05 0.24
Australia TOW2 147.06 −19.27 55.73 28.85 0.06 0.06 −0.46 −0.41
Australia HOB2 147.44 −42.80 55.63 14.18 0.74 0.08 −0.36 −0.00
Australia PARK 148.26 −33.00 53.07 18.92 0.31 0.30 −2.65 −1.50
Australia TIDB 148.98 −35.40 55.25 18.29 0.06 0.07 −0.20 −0.12
Australia STR1 149.01 −35.32 55.35 18.65 0.08 0.07 −0.10 0.20
Australia SYDN 151.15 −33.78 54.35 18.06 0.15 0.15 −0.25 −0.30
Australia SUNM 153.04 −27.48 53.95 21.95 0.24 0.20 0.15 0.06
Australia KOUC 164.29 −20.56 47.58 22.47 0.17 0.25 −0.22 −0.58
Australia NOUM 166.41 −22.27 45.79 20.57 0.14 0.14 −0.66 −0.43
Australia AUCK 174.83 −36.60 39.74 4.50 0.07 0.11 −0.72 −0.00

Continued on next page –
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Table 16 – continued from previous page
Station Horizontal Velocities (mm/yr) Residuals (mm/yr)

Plate ID λ (deg) φ (deg) VN VE σVN σVE N E
Caribbean CRO1 −64.58 17.76 13.54 11.04 0.08 0.19 0.06 −0.83
Eurasia HERS 0.34 50.87 16.47 16.50 0.25 0.13 −0.20 −0.51
Eurasia EBRE 0.49 40.82 15.82 19.84 0.12 0.04 −0.85 0.25
Eurasia SHEE 0.74 51.45 16.57 16.70 0.27 0.08 −0.08 −0.24
Eurasia BELL 1.40 41.60 15.96 19.56 0.17 0.09 −0.66 −0.03
Eurasia TOUL 1.48 43.56 16.81 20.06 0.25 0.27 0.20 0.91
Eurasia OPMT 2.33 48.84 15.79 18.15 0.09 0.06 −0.76 0.14
Eurasia MALL 2.62 39.55 16.29 19.80 0.09 0.15 −0.25 −0.46
Eurasia SJDV 4.68 45.88 16.05 19.45 0.08 0.06 −0.35 0.20
Eurasia REDU 5.14 50.00 15.59 18.28 0.09 0.11 −0.77 −0.03
Eurasia MARS 5.35 43.28 15.96 20.05 0.06 0.06 −0.39 0.07
Eurasia KOSG 5.81 52.18 16.01 18.05 0.08 0.06 −0.29 0.16
Eurasia WSRT 6.60 52.91 16.41 17.64 0.07 0.05 0.17 −0.22
Eurasia BORK 6.75 53.56 15.22 17.59 0.18 0.08 −1.01 −0.13
Eurasia WAB2 7.46 46.92 15.84 19.85 0.08 0.09 −0.33 0.28
Eurasia ZIMM 7.47 46.88 16.22 19.60 0.07 0.04 0.05 0.01
Eurasia IENG 7.64 45.02 15.40 20.48 0.09 0.09 −0.75 0.43
Eurasia HELG 7.89 54.17 15.93 17.63 0.09 0.07 −0.19 −0.18
Eurasia AJAC 8.76 41.93 15.75 21.35 0.10 0.21 −0.30 0.44
Eurasia PTBB 10.46 52.30 15.55 18.81 0.07 0.06 −0.33 −0.07
Eurasia WARN 12.10 54.17 15.58 18.32 0.09 0.06 −0.12 −0.44
Eurasia BUDP 12.50 55.74 14.94 18.01 0.07 0.05 −0.71 −0.41
Eurasia WTZR 12.88 49.14 15.55 20.39 0.06 0.04 −0.07 0.22
Eurasia POTS 13.07 52.38 15.12 19.16 0.08 0.05 −0.47 −0.27
Eurasia SASS 13.64 54.51 14.66 19.00 0.16 0.06 −0.87 −0.00
Eurasia GOPE 14.79 49.91 15.10 19.99 0.13 0.10 −0.29 −0.40
Eurasia GRAZ 15.49 47.07 15.38 21.93 0.07 0.06 0.08 0.78
Eurasia WROC 17.06 51.11 14.63 20.17 0.09 0.06 −0.47 −0.40
Eurasia BOR1 17.07 52.28 14.58 20.01 0.06 0.07 −0.51 −0.29

Continued on next page –
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Table 16 – continued from previous page
Station Horizontal Velocities (mm/yr) Residuals (mm/yr)

Plate ID λ (deg) φ (deg) VN VE σVN σVE N E
Eurasia PENC 19.28 47.79 14.66 22.15 0.13 0.05 −0.13 0.41
Eurasia LAMA 20.67 53.89 14.36 20.10 0.15 0.05 −0.22 −0.56
Eurasia JOZE 21.03 52.10 14.38 21.03 0.09 0.07 −0.14 −0.12
Eurasia BOGO 21.04 52.48 14.44 20.57 0.12 0.10 −0.09 −0.49
Eurasia KLPD 21.12 55.72 13.43 20.06 0.24 0.30 −1.08 −0.25
Eurasia UZHL 22.30 48.63 13.89 21.83 0.08 0.10 −0.44 −0.30
Eurasia SULP 24.01 49.84 13.95 21.47 0.10 0.09 −0.10 −0.74
Eurasia RIGA 24.06 56.95 13.44 20.21 0.07 0.08 −0.60 −0.40
Eurasia GLSV 30.50 50.36 12.84 22.37 0.09 0.07 −0.06 −0.90
Eurasia MIKL 31.97 46.97 12.07 23.52 0.12 0.11 −0.55 −0.60
Eurasia CRAO 33.99 44.41 11.50 23.73 0.16 0.29 −0.71 −1.08
Eurasia KHAR 36.24 50.01 11.91 24.20 0.17 0.17 0.18 −0.09
Eurasia MOBN 36.57 55.11 11.74 22.77 0.38 0.16 0.07 −0.59
Eurasia ZECK 41.57 43.79 11.72 26.02 0.06 0.12 1.16 0.08
Eurasia ARTU 58.56 56.43 6.23 24.98 0.08 0.12 0.02 −0.99
Eurasia NVSK 83.24 54.84 −0.93 25.78 1.12 0.79 −0.00 −1.42
Eurasia KSTU 92.79 55.99 −4.53 25.68 0.36 0.25 −0.81 −1.00
Eurasia CASC −9.42 38.69 16.79 17.85 0.05 0.07 −0.16 −0.39
Eurasia TORS −6.76 62.02 17.57 10.63 0.23 0.60 0.67 −1.11
Eurasia NEWL −5.54 50.10 16.36 15.75 0.17 0.06 −0.53 −0.16
Eurasia BRST −4.50 48.38 16.84 16.77 0.09 0.07 −0.02 0.12
Eurasia MADR −4.25 40.43 16.03 18.38 0.17 0.20 −0.84 −0.41
Eurasia VILL −3.95 40.44 16.42 18.73 0.12 0.08 −0.43 −0.11
Eurasia CANT −3.80 43.47 16.45 18.41 0.07 0.06 −0.40 0.29
Eurasia YEBE −3.09 40.52 16.29 18.72 0.05 0.12 −0.54 −0.26
Eurasia MORP −1.69 55.21 16.79 15.30 0.19 0.26 0.03 0.04
Eurasia NSTG −1.44 55.01 16.24 16.25 0.07 0.19 −0.51 0.87
Eurasia HRM1 −1.28 51.45 16.44 16.41 0.08 0.05 −0.30 −0.08
Eurasia LROC −1.22 46.16 16.32 18.10 0.06 0.06 −0.43 0.15
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Table 16 – continued from previous page
Station Horizontal Velocities (mm/yr) Residuals (mm/yr)

Plate ID λ (deg) φ (deg) VN VE σVN σVE N E
Eurasia ALAC −0.48 38.34 16.67 20.21 0.07 0.13 −0.05 0.26
Eurasia CHIZ −0.41 46.13 16.25 18.35 0.05 0.09 −0.46 0.22
Eurasia NPLD −0.34 51.42 15.94 17.03 0.14 0.08 −0.76 0.32
Eurasia VALE −0.34 39.48 16.09 19.75 0.06 0.09 −0.62 0.01
India MALD 73.53 4.19 34.04 43.30 0.24 0.49 0.25 −0.61
India HYDE 78.55 17.42 34.25 41.06 0.24 0.17 −0.11 −0.02
Nazca EISL −109.38 −27.15 −6.78 67.07 0.28 0.29 −0.70 −0.77
Nazca GALA −90.30 −0.74 10.45 51.37 0.17 0.13 −0.10 −0.04
Nazca GALA −90.30 −0.74 10.45 51.37 0.17 0.13 −0.10 −0.04
N. America PUC1 −110.81 39.60 −8.30 −14.12 0.07 0.09 −1.21 0.12
N. America NISU −105.26 40.00 −5.98 −15.00 0.24 0.18 −0.64 −0.29
N. America AMC2 −104.52 38.80 −5.69 −14.45 0.08 0.10 −0.59 0.05
N. America MDO1 −104.01 30.68 −5.81 −12.01 0.10 0.10 −0.87 0.68
N. America SUM1 −102.51 34.83 −5.76 −13.06 0.80 0.21 −1.31 0.67
N. America AUS5 −97.76 30.31 −2.74 −11.46 0.18 0.19 0.15 1.35
N. America PATT −95.72 31.78 −2.55 −12.73 0.08 0.13 −0.33 0.49
N. America ANG1 −95.49 29.30 −1.78 −11.73 0.13 0.38 0.36 0.88
N. America WNFL −92.78 31.90 −1.85 −12.20 0.14 0.08 −0.61 1.10
N. America NLIB −91.57 41.77 −1.30 −15.24 0.11 0.08 −0.46 0.31
N. America MIL1 −87.89 43.00 −0.06 −15.04 0.17 0.19 −0.45 0.76
N. America MLF1 −87.39 32.09 0.37 −12.97 0.19 0.26 −0.18 0.39
N. America STB1 −87.31 44.80 −0.93 −16.12 0.15 0.08 −1.51 0.03
N. America UNIV −84.39 42.29 1.03 −15.61 0.08 0.09 −0.52 0.01
N. America LEBA −84.28 39.43 1.59 −14.85 0.08 0.10 0.00 0.17
N. America BAYR −83.89 43.45 0.88 −16.11 0.08 0.09 −0.84 −0.27
N. America MCN1 −83.56 32.70 1.78 −13.23 0.12 0.10 −0.05 0.24
N. America ASHV −82.55 35.60 2.09 −14.14 0.12 0.11 −0.08 −0.00
N. America MCD1 −82.53 27.85 1.26 −10.99 0.20 0.17 −0.91 1.24
N. America SAV1 −81.70 32.14 2.39 −12.63 0.08 0.11 −0.06 0.66
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Table 16 – continued from previous page
Station Horizontal Velocities (mm/yr) Residuals (mm/yr)

Plate ID λ (deg) φ (deg) VN VE σVN σVE N E
N. America CCV3 −80.55 28.46 2.88 −12.30 0.14 0.10 0.05 0.05
N. America CHA1 −79.84 32.76 3.28 −12.90 0.17 0.19 0.22 0.50
N. America PSU1 −77.85 40.81 3.68 −15.19 0.15 0.06 −0.04 −0.07
N. America GODE −76.83 39.02 4.07 −14.68 0.06 0.07 0.02 0.03
N. America GLPT −76.50 37.25 4.08 −14.35 0.06 0.12 −0.08 −0.04
N. America HNPT −76.13 38.59 4.54 −14.44 0.37 0.54 0.26 0.14
N. America DUCK −75.75 36.18 4.24 −13.96 0.15 0.22 −0.16 0.08
N. America VIMS −75.69 37.61 4.75 −14.06 0.08 0.05 0.33 0.29
N. America DNRC −75.52 39.16 4.02 −15.17 0.09 0.20 −0.46 −0.49
N. America CHL1 −75.09 38.78 3.99 −14.61 0.15 0.13 −0.63 −0.04
N. America WES2 −71.49 42.61 5.41 −15.12 0.12 0.07 −0.36 0.01
N. America NPRI −71.33 41.51 5.66 −15.06 0.07 0.06 −0.16 −0.16
N. America BARH −68.22 44.40 6.73 −15.23 0.06 0.05 −0.07 −0.02
N. America EPRT −66.99 44.91 7.25 −15.42 0.07 0.04 0.07 −0.23
N. America UNB1 −66.64 45.95 7.30 −15.87 0.24 0.27 0.01 −0.54
N. America BRMU −64.70 32.37 8.87 −11.97 0.18 0.38 0.98 0.56
N. America HLFX −63.61 44.68 8.67 −15.21 0.06 0.05 0.45 −0.38
Nubia WIND 17.09 −22.57 19.54 19.00 0.11 0.14 0.30 −1.05
Nubia SIMO 18.44 −34.19 19.43 16.68 0.14 0.31 0.29 −0.33
Nubia SUTH 20.81 −32.38 19.10 16.86 0.09 0.11 0.11 −0.23
Nubia LPAL −17.89 28.76 17.17 16.13 0.11 0.09 −0.44 −0.06
Nubia DAKA −17.47 14.68 14.16 21.02 0.43 0.39 −3.52 0.82
Nubia MAS1 −15.63 27.76 17.57 16.62 0.15 0.13 −0.36 −0.22
Nubia GOUG −9.88 −40.35 18.80 21.36 0.20 0.19 0.21 0.02
Pacific MCIL 153.98 24.29 24.13 −71.71 0.21 0.12 −1.40 −1.17
Pacific POHN 158.21 6.96 25.61 −70.10 0.20 0.11 −1.62 −1.30
Pacific NAUR 166.93 −0.55 30.05 −67.00 0.10 0.10 −0.20 −0.53
Pacific KWJ1 167.73 8.72 29.32 −68.90 0.12 0.12 −1.17 −0.45
Pacific KIRI 172.92 1.35 31.09 −67.75 0.15 0.08 −0.82 −0.79
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Table 16 – continued from previous page
Station Horizontal Velocities (mm/yr) Residuals (mm/yr)

Plate ID λ (deg) φ (deg) VN VE σVN σVE N E
Pacific TUVA 179.20 −8.53 32.43 −63.88 0.06 0.13 −0.85 0.44
Pacific CHAT −176.57 −43.96 33.21 −40.58 0.08 0.11 −0.73 1.77
Pacific FALE −172.00 −13.83 33.26 −63.55 0.06 0.12 −1.27 −0.14
Pacific SAMO −171.74 −13.85 33.47 −64.09 0.09 0.23 −1.09 −0.65
Pacific ASPA −170.72 −14.33 34.16 −63.24 0.07 0.16 −0.49 0.17
Pacific CKIS −159.80 −21.20 35.35 −62.49 0.11 0.13 0.45 0.35
Pacific KOK1 −159.76 21.98 35.13 −62.21 0.11 0.13 0.22 −1.11
Pacific KOKB −159.66 22.13 34.64 −62.24 0.07 0.12 −0.26 −1.21
Pacific LHUE −159.34 21.98 34.93 −61.45 1.71 0.29 0.04 −0.44
Pacific HNLC −157.86 21.30 34.62 −62.54 0.05 0.06 −0.20 −1.54
Pacific UPO1 −155.88 20.25 35.39 −67.33 0.33 0.49 0.69 −6.26
Pacific MKEA −155.46 19.80 34.85 −62.23 0.06 0.08 0.17 −1.00
Pacific HILO −155.05 19.72 35.44 −63.02 0.07 0.38 0.81 −1.88
Pacific THTI −149.61 −17.58 34.46 −65.44 0.08 0.11 0.44 0.53
Pacific GUAX −118.29 28.88 25.33 −46.99 0.20 0.22 0.47 −0.40
S. America BUE2 −58.52 −34.57 12.46 0.00 0.99 0.01 1.21 1.91
S. America LPGS −57.93 −34.91 11.77 −0.95 0.09 0.10 0.48 0.98
S. America LKTH −57.85 −51.70 12.29 0.38 0.17 0.20 1.00 0.38
S. America KOUR −52.81 5.25 12.63 −5.21 0.10 0.07 1.00 0.31
S. America UEPP −51.41 −22.12 12.82 −3.29 0.18 0.24 1.12 0.50
S. America PARA −49.23 −25.45 12.18 −3.53 0.14 0.26 0.38 0.18
S. America NEIA −47.92 −25.02 12.74 −2.45 0.19 0.15 0.89 1.41
S. America BRAZ −47.88 −15.95 12.59 −4.29 0.11 0.13 0.73 0.18
S. America FORT −38.43 −3.88 12.33 −4.26 0.14 0.27 0.27 0.97
S. America ASC1 −14.41 −7.95 11.04 −5.24 0.11 0.16 −0.04 0.62
Somalia MALI 40.19 −3.00 16.34 26.75 0.14 0.20 −0.31 1.75
Somalia REUN 55.57 −21.21 12.43 16.89 0.10 0.20 −0.97 −1.90
Sunda NTUS 103.68 1.35 −5.26 30.27 0.18 0.24 0.01 0.28
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B An Evaluation of the MCMC using Hector and the Benchmark
Synthetic GNSS time series

Herewe provide an evaluation of theMCMCmethod as implemented byOlivares and
Teferle (2013) using Hector and the Benchmark Synthetic GNSS (BSG) time series.
While providing the results from MCMC by themselves, we also carry out a basic
comparison with the results provided and computed in-house with Hector. We have
computed our own Hector parameter estimates since MCMC is a computationally
intensive method and we have down–sampled the daily time series into weekly ones
for all BSG series, see Fig. 36 for an example showing both original and down–
sampled time series. Fig. 37 shows the differences in the trend estimates v between
the two methods. Overall the parameter estimates (trend, amplitude of the annual
term and phase-lag, white and power-low noise amplitudes as well as spectral index)
are in good agreement between MCMC and Hector. A detailed comparison is shown
in Tables 17, 18, and 19 for the deterministic parameter estimates, and in Tables 20,
21 and 22 for the stochastic parameter estimates.

B.1 Gaussian properties of parameters estimates from MCMC

The parameters estimated from MCMC follow in general a Gaussian distribution.
While these histograms can provide valuable additional information it is clear that
in several cases the MCMC method has failed to provide converged results. This is
most likely due to instabilities in the variance/covariance matrix within the MCMC
method.. Fig. 38 and 39 show the histograms for the trend components for the 20
time series.

Further we have tested the Gaussian properties of the parameter estimates from
the MCMC method by constructing the histograms for the amplitude estimates of
the annual terms as shown in Figures 40, 41, 42, 43, 44, and 45 for the North, East
and Up components, respectively.

We have also compared themean andmedian trend estimates for all the time series
considered in this analysis. The mean and median values show a similar magnitude.
An indication that the estimates from MCMC exhibit unbiased and uncorrelated
properties. A further test for the Skewness and the Kurtosis ("tailedness" of the
probability distribution) for the trends again show the majority of the estimates
indeed follow a Gaussian distribution, see Tables 23, 24, and 25. Formally, the
Skewness of a Gaussian distribution is 0 while the Kurtossis is 3.
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Fig. 36: A weekly sampled time series (green line) superimposed on the daily time
series (red line) for one of the time series for North, East, and Up components.
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Fig. 37: Trend differences between Hector and MCMC for the 20 weekly BSG
time series. North, East, and Up components are displayed in green, red, and blue,
respectively. A box whisker plot showing minimum, 25th percentile, median, 75th
percentile and maximum values is to the right.
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Fig. 38: Histograms of the trend estimates of the Up component, continued on next
page
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Fig. 40:Histograms for the annual term amplitude of theNorth component, continued
on next page.
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Fig. 41:Histograms for the annual term amplitude of theNorth component, continued
from Figure 40.
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Fig. 42: Histograms for the annual term amplitude of the East component, continued
on next page.
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Fig. 43: Histogram for the annual term amplitude of the East component, continued
from Figure 42.



Markov Chain Monte Carlo and the Application to Geodetic Time Series Analysis 87

0

1

2

3

4

5

6

7

8

N
u

m
b

e
r 

o
f 

s
te

p
s

 i
n

 %

−3 −2 −1 0 1 2 3

Annual amplitude [mm]

0

1

2

3

4

5

6

7

8

N
u

m
b

e
r 

o
f 

s
te

p
s

 i
n

 %

0

1

2

3

4

5

6

7

8

N
u

m
b

e
r 

o
f 

s
te

p
s

 i
n

 %

0

1

2

3

4

5

6

7

8

N
u

m
b

e
r 

o
f 

s
te

p
s

 i
n

 %

−3 −2 −1 0 1 2 3

Annual amplitude [mm]

 

−3 −2 −1 0 1 2 3

Annual amplitude [mm]

 
 

 

Station 0 Station 4 Station 8

Station 1 Station 5 Station 9

Station 2 Station 6 Station 10

Station 3 Station 7 Station 11

Fig. 44: Histograms for the annual term amplitude of the Up component, continued
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