7 research outputs found

    Strontium(II) Ion Surface-Imprinted Polymers Supported by Potassium Tetratitanate Whiskers: Synthesis, Characterization and Adsorption Behaviours

    No full text
    Novel surface strontium(II) ion-imprinted adsorbent particles have been prepared via the copolymerization of chitosan as the monomer, Ī³-(2,3-epoxypropoxy)propyltrimethoxysilane (KH-560) as the cross-linking agent and 2,2ā€²-azobisisobutyronitrile (AIBN) as the initiator in the presence of SrCl 2 ā€¢ 6H 2 O. The prepared imprinted adsorbent was used for the selective solid-phase extraction (SPE) of trace Sr(II) ions in a practical sample prior to its determination by inductively coupled plasmaā€“atomic emission spectrometry (ICPā€“AES). The results suggest that the adsorption kinetic data accorded better with the pseudo-second-order model, while the adsorption equilibrium data gave a good fit to the Langmuir isotherm equation, yielding a maximum adsorption capacity of 27.58 mg/g and a Langmuir adsorption equilibrium coefficient of 0.0363 ā„“/mg at 298 K. The relative selectivity coefficient values of Sr(II) ion-imprinted particles were several times greater than those for the non-imprinted matrix. The new Sr(II) ion-imprinted micro-beads were successfully applied for the separation of Sr(II) ions from river and clay samples. The detection limit (3Ļƒ) for Sr(II) ions as determined by flame atomic absorption spectrometry (FAAS) was 0.21 ng/mā„“. The relative standard deviation (RSD) for the determination of Sr(II) ions was 6ā€“9% over the concentration range 0.03ā€“0.3 mg/ā„“

    Microbial Consortia: An Engineering Tool to Suppress Clubroot of Chinese Cabbage by Changing the Rhizosphere Bacterial Community Composition

    No full text
    Clubroot disease, caused by Plasmodiophora brassicae, is a serious threat to Chinese cabbage (Brassica rapa subsp. pekinensis) production, which results in extensive yield losses. At present, clubroot control mainly depends upon pesticides, which provoke food-safety concerns, and the application of sole biocontrol agents cannot successfully control the disease. In this study, we investigated the effect of Bacillus cereus BT-23, Lysobacter antibioticus 13-6, and Lysobacter capsici ZST1-2 as sole strains, intra-/inter-genus co-culture, and microbial consortia on clubroot disease, plant growth, and rhizosphere bacterial diversity in a field experiment. The microbial consortia efficiently controlled the incidence of clubroot disease, with a biocontrol effect of about 65.78%, by decreasing the soil acidity and enhancing the yield (17,662.49 kg/acre). The high-throughput sequencing results demonstrated that the phyla Proteobacteria and Bacteroidetes were present in high relative abundance in the rhizosphere soil of the Chinese cabbage. Furthermore, Firmicutes was found as a unique phylum in the rhizosphere soil of CK-H and T1-T7, except for CK-D. The application of microbial consortia recovers the imbalance in indigenous microbial communities. Therefore, we conclude that microbial consortia can reduce the clubroot incidence in Chinese cabbage by decreasing the soil acidity and altering the diversity and structure of rhizosphere bacterial communities. This study highlights the potential of microbial consortia as an engineering tool to control devastating soilborne diseases in commercial crops

    Colorimetric Method for Sensitive Detection of Microcystin-LR Using Surface Copper Nanoparticles of Polydopamine Nanosphere as Turn-On Probe

    No full text
    A novel, facile sensor was further developed for microcystin-LR (MC-LR) determination by visible spectroscopy. Antibody-functionalized SiO2-coated magnetic nanoparticles (Fe3O4@SiO2) and aptamer-functionalized polydopamine nanospheres decorated with Cu nanoparticles (PDA/CuNPs) recognized specific sites in MC-LR and then the sandwich-type composites were separated magnetically. The Cu in the separated composites was converted to Cu2+ ions in solution and turn-on visible absorption was achieved after reaction with bis(cyclohexanone)oxaldihydrazone (BCO) (λmax = 600 nm). There was a quantitative relationship between the spectral intensity and MC-LR concentration. In addition, under the optimum conditions, the sensor turns out to be a linear relationship from 0.05 to 25 nM, with a limit of detection of 0.05 nM (0.05 μg/L) (S/N = 3) for MC-LR. The sensitivity was dependent on the low background absorption from the off-to-on spectrum and label amplification by the polydopamine (PDA) surface. The sensor had high selectivity, which shows the importance of dual-site recognition by the aptamer and antibody and the highly specific color formed by BCO with Cu2+. The bioassay was complete within 150 min, which enabled quick determination. The sensor was successfully used with real spiked samples. These results suggest it has potential applications in visible detection and could be used to detect other microcystin analogs

    In-Situ Fabrication of g-C<sub>3</sub>N<sub>4</sub>/ZnO Nanocomposites for Photocatalytic Degradation of Methylene Blue: Synthesis Procedure Does Matter

    No full text
    The nanocomposite preparation procedure plays an important role in achieving a well-established heterostructured junction, and hence, an optimized photocatalytic activity. In this study, a series of g-C3N4/ZnO nanocomposites were prepared through two distinct procedures of a low-cost, environmentally-friendly, in-situ fabrication process, with urea and zinc acetate being the only precursor materials. The physicochemical properties of synthesized g-C3N4/ZnO composites were mainly characterized by XRD, UV&#8315;VIS diffuse reflectance spectroscopy (DRS), N2 adsorption-desorption, FTIR, TEM, and SEM. These nanocomposites&#8217; photocatalytic properties were evaluated in methylene blue (MB) dye photodecomposition under UV and sunlight irradiation. Interestingly, compared with ZnO nanorods, g-C3N4/ZnO nanocomposites (x:1, obtained from urea and ZnO nanorods) exhibited weak photocatalytic activity likely due to a &#8220;shading effect&#8222;, while nanocomposites (x:1 CN, made from g-C3N4 and zinc acetate) showed enhanced photocatalytic activity that can be ascribed to the effective establishment of heterojunctions. A kinetics study showed that a maximum reaction rate constant of 0.1862 min-1 can be achieved under solar light illumination, which is two times higher than that of bare ZnO nanorods. The photocatalytic mechanism was revealed by determining reactive species through adding a series of scavengers. It suggested that reactive ā—O2&#8722; and h+ radicals played a major role in promoting dye photodegradation

    Crop Rotation with Marigold Promotes Soil Bacterial Structure to Assist in Mitigating Clubroot Incidence in Chinese Cabbage

    No full text
    Clubroot caused by Plasmodiophora brassicae is an economically important soilborne disease of Chinese cabbage worldwide. Integrated biological control through crop rotation is considered a good disease management approach to suppress the incidence of soilborne diseases. In this study, we evaluated the effect of a marigold plant (root exudates, crude extract, and powder) on the germination and death of resting spores of P. brassicae in vitro assays. Additionally, we also performed 16S high throughput sequencing, to investigate the impact of marigoldā€“Chinese cabbage crop rotation on soil bacterial community composition, to manage this devastating pathogen. This study revealed that the marigold root exudates, crude extract, and powder significantly promoted the germination and death of P. brassicae resting spores. Under field conditions, marigoldā€“Chinese cabbage crop rotation with an empty period of at least 15 days enhanced the germination of P. brassicae resting spores, shifted the rhizosphere bacterial community composition, and suppressed the incidence of clubroot by up to 63.35%. Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, and Verrucomicrobia were the most dominant phyla and were present at high relative levels in the rhizosphere soil of Chinese cabbage. We concluded that crop rotation of Chinese cabbage with marigold can significantly reduce the incidence of clubroot disease in the next crop. To our knowledge, this is the first comprehensive study on the prevention and control of clubroot disease in Chinese cabbage through crop rotation with marigold
    corecore