48 research outputs found

    Aly: a possible E2F interacting protein

    Get PDF
    Comunicaciones a congreso

    E2F7 regulates transcription and maturation of multiple microRNAs to restrain cell proliferation

    Get PDF
    This work was supported by the Spanish Ministry [SAF2012-33551, co-funded by the European RegionalDevelopment fund to A.M.Z., SAF2012-38215 to M.M.,SAF2014-57791-REDC to A.M.Z. and to M.M.]; BasqueGovernment [IT634-13 to A.M.Z.]; University of theBasque Country UPV/EHU [UFI1120 to A.M.Z.]; Excellence Network CellSYS [BFU2014-52125-REDT to M.M.];Comunidad de Madrid [S2010/BMD-2470 to M.M.];Basque Government Fellowship for graduate studies (to J.M.). Funding for open access charge: Basque Government [IT634-13]. Conflict of interest statement. None declared.E2F transcription factors (E2F1-8) are known to coordinately regulate the expression of a plethora of target genes, including those coding for microRNAs (miRNAs), to control cell cycle progression. Recent work has described the atypical E2F factor E2F7 as a transcriptional repressor of cell cycle-related protein-coding genes. However, the contribution of E2F7 to miRNA gene expression during the cell cycle has not been defined. We have performed a genome-wide RNA sequencing analysis to identify E2F7-regulated miRNAs and show that E2F7 plays as a major role in the negative regulation of a set of miRNAs that promote cellular proliferation. We provide mechanistic evidence for an interplay between E2F7 and the canonical E2F factors E2F1-3 in the regulation of multiple miRNAs. We show that miR-25, -26a, -27b, -92a and -7 expression is controlled at the transcriptional level by the antagonistic activity of E2F7 and E2F1-3. By contrast, let-7 miRNA expression is controlled indirectly through a novel E2F/c-MYC/LIN28B axis, whereby E2F7 and E2F1-3 modulate c-MYC and LIN28B levels to impact let-7 miRNA processing and maturation. Taken together, our data uncover a new regulatory network involving transcriptional and post-transcriptional mechanisms controlled by E2F7 to restrain cell cycle progression through repression of proliferation-promoting miRNAs.S

    Transcriptional activation of the proapoptotic bik gene by E2F proteins in cancer cells

    Get PDF
    AbstractBH3-only proteins are required for execution of apoptotic cell death. We have found that one of these proteins, Bik, is strongly induced in cancer cells treated with chemotherapeutic agents. Furthermore, we showed that chemotherapy-induced expression of bik is independent of p53. Consistent with its pro-apoptotic activity, blockade of bik expression reduces the adriamycin-mediated apoptotic cell death. We also found that the bik gene is transcriptionally activated by E2F proteins. Consistently, adriamycin induces the E2F-bik pathway. In addition, E2Fs transactivate bik by a p53-independent mechanism. Thus, our data indicate that transcriptional regulation of bik contributes to the efficient apoptotic response to chemotherapeutic agents

    Exploring genetic factors involved in huntington disease age of onset. E2F2 as a new potential modifier gene

    Get PDF
    Age of onset (AO) of Huntington disease (HD) is mainly determined by the length of the CAG repeat expansion (CAGexp) in exon 1 of the HTT gene. Additional genetic variation has been suggested to contribute to AO, although the mechanism by which it could affect AO is presently unknown. The aim of this study is to explore the contribution of candidate genetic factors to HD AO in order to gain insight into the pathogenic mechanisms underlying this disorder. For that purpose, two AO definitions were used: the earliest age with unequivocal signs of HD (earliest AO or eAO), and the first motor symptoms age (motor AO or mAO). Multiple linear regression analyses were performed between genetic variation within 20 candidate genes and eAO or mAO, using DNA and clinical information of 253 HD patients from REGISTRY project. Gene expression analyses were carried out by RT-qPCR with an independent sample of 35 HD patients from Basque Country Hospitals. We found suggestive association signals between HD eAO and/or mAO and genetic variation within the E2F2, ATF7IP, GRIN2A, GRIN2B, LINC01559, HIP1 and GRIK2 genes. Among them, the most significant was the association between eAO and rs2742976, mapping to the promoter region of E2F2 transcription factor. Furthermore, rs2742976 T allele patient carriers exhibited significantly lower lymphocyte E2F2 gene expression, suggesting a possible implication of E2F2-dependent transcriptional activity in HD pathogenesis. Thus, E2F2 emerges as a new potential HD AO modifier factor

    Foreword Special Issue Genomic Instability in Tumor Evolution and Therapy Response

    Get PDF
    From an evolutionary perspective, mutations in the DNA molecule act as a source of genetic variation and thus, are beneficial to the adaptation and survival of the species [...

    Cholera Toxin Discriminates Between T Helper 1 and 2 Cells in T Cell Receptor-Mediated Activation: Role of cAMP in T Cell Proliferation

    Get PDF
    CD4+ T helper (Th) clones can be divided into interleukin 2 (IL2)-secreting Th1 and IL-4-secreting Th2 cells. We show in the present report that these two Th subsets have different activation requirements for lymphokine production and proliferation: namely, cholera toxin (CT) as well as forskolin inhibit T cell receptor (TCR)-mediated IL2 production and proliferation in Th1 cells, while the same reagents fail to block IL-4 production and proliferation in Th2 cells. In addition, CT and forskolin differentially influence the proto-oncogene mRNA expression in Th1 vs. Th2 cells after stimulation with Con A. Since both reagents lead to elevated levels of intracellular cAMP, it is likely that Th1 and Th2 cells differ in their sensitivity to an increase in cAMP. Our results indicate that the two Th subsets use different transmission signal pathways upon TCR-mediated activation.
    corecore