75 research outputs found

    Estimations of orbital parameters of exoplanets from transit photometry by using dynamical constraints

    Get PDF
    The probability of the detection of Earth-like exoplanets may increase in the near future after the launch of the space missions using the transit photometry as observation method. By using this technique only the semi-major axis of the detected planet can be determined, and there will be no information on the upper limit of its orbital eccentricity. However, the orbital eccentricity is a very important parameter, not only from a dynamical point of view, since it gives also information on the climate and the habitability of the Earth-like planets. In this paper a possible procedure is suggested for confining the eccentricity of an exoplanet discovered by transit photometry if an already known giant planet orbits also in the system.Comment: 16 pages, 10 figures, accepted for Cel. Mech. Dyn. Astro

    Increased isolation mass for pebble accreting planetary cores in pressure maxima of protoplanetary discs

    Get PDF
    The growth of a pebble accreting planetary core is stopped when reaching its isolation mass that is due to a pressure maximum emerging at the outer edge of the gap opened in gas. This pressure maximum traps the inward drifting pebbles stopping the accretion of solids on to the core. On the other hand, a large amount of pebbles ( \\sim \\! 100\\, {\\mathrm{ M}}_\\oplus ) should flow through the orbit of the core until reaching its isolation mass. The efficiency of pebble accretion increases if the core grows in a dust trap of the protoplanetary disc. Dust traps are observed as ring-like structures by ALMA suggesting the existence of global pressure maxima in discs that can also act as planet migration traps. This work aims to reveal how large a planetary core can grow in such a pressure maximum by pebble accretion. In our hydrodynamic simulations, pebbles are treated as a pressureless fluid mutually coupled to the gas via drag force. Our results show that in a global pressure maximum the pebble isolation mass for a planetary core is significantly larger than in discs with power-law surface density profile. An increased isolation mass shortens the formation time of giant planets

    Off-flavour compounds in common carp (Cyprinus carpio L.) flesh in context of type of fish pond

    Get PDF
    The aim of our study was to survey the geosmin (GSM) and 2-methylisoborneol (MIB) concentrations of the sediment and that of common carp (Cyprinus carpio) flesh in three different Hungarian fish farms (clayey, marshy, and sodic ponds). Results showed that the concentrations of off-flavour compounds of the sediment and fish fillets were related to the natural environment. The GSM concentration of bottom soil samples was higher, than MIB in each fish farm. Both off-flavour compounds were the highest in the marshy fish pond and the lowest in the sodic pond. In case of fish flesh, significant differences were found between the farms in GSM level and fat content. In the fish flesh the same tendency was found as in the sediments, but surprisingly, MIB concentration was higher in the fillets, referring to accumulation

    Formation of the resonant system HD 60532

    Full text link
    Among multi-planet planetary systems there are a large fraction of resonant systems. Studying the dynamics and formation of these systems can provide valuable informations on processes taking place in protoplanetary disks where the planets are thought have been formed. The recently discovered resonant system HD 60532 is the only confirmed case, in which the central star hosts a pair of giant planets in 3:1 mean motion resonance. We intend to provide a physical scenario for the formation of HD 60532, which is consistent with the orbital solutions derived from the radial velocity measurements. Observations indicate that the system is in an antisymmetric configuration, while previous theoretical investigations indicate an asymmetric equilibrium state. The paper aims at answering this discrepancy as well. We performed two-dimensional hydrodynamical simulations of thin disks with an embedded pair of massive planets. Additionally, migration and resonant capture are studied by gravitational N-body simulations that apply properly parametrized non-conservative forces. Our simulations suggest that the capture into the 3:1 mean motion resonance takes place only for higher planetary masses, thus favouring orbital solutions having relatively smaller inclination i=20 degrees. The system formed by numerical simulations qualitatively show the same behaviour as HD 60532. We also find that the presence of an inner disk (between the inner planet and the star) plays a very important role in determining the final configurations of resonant planetary systems. Its damping effect on the inner planet's eccentricity is responsible for the observed antisymmetric state of HD 60532.Comment: 7 pages, 7 figures, Accepted for publication in Astronomy & Astrophysic

    Giant planet formation at the pressure maxima of protoplanetary disks

    Get PDF
    Context. In the classical core-accretion planet-formation scenario, rapid inward migration and accretion timescales of kilometer size planetesimals may not favor the formation of massive cores of giant planets before the dissipation of protoplanetary disks. On the other hand, the existence of pressure maxima in the disk could act as migration traps and locations for solid material accumulation, favoring the formation of massive cores. Aims. We aim to study the radial drift of pebbles and planetesimals and planet migration at pressure maxima in a protoplanetary disk and their implications for the formation of massive cores as triggering a gaseous runaway accretion phase. Methods. The time evolution of a viscosity driven accretion disk is solved numerically introducing a a dead zone as a low-viscosity region in the protoplanetary disk. A population of pebbles and planetesimals evolving by radial drift and accretion by the planets is also considered. Finally, the embryos embedded in the disk grow by the simultaneous accretion of pebbles, planetesimals, and the surrounding gas. Results. Our simulations show that the pressure maxima generated at the edges of the low-viscosity region of the disk act as planet migration traps, and that the pebble and planetesimal surface densities are significantly increased due to the radial drift towards pressure maxima locations. However, our simulations also show that migration-trap locations and solid-material-accumulation locations are not exactly at the same positions. Thus, a planet's semi-major axis oscillations around zero torque locations predicted by MHD and HD simulations are needed for the planet to accrete all the available material accumulated at the pressure maxima. Conclusions. Pressure maxima generated at the edges of a low-viscosity region of a protoplanetary disk seem to be preferential locations for the formation and trap of massive cores.Instituto de Astrofísica de La Plat

    Giant planet formation at the pressure maxima of protoplanetary disks

    Get PDF
    Context. In the classical core-accretion planet-formation scenario, rapid inward migration and accretion timescales of kilometer size planetesimals may not favor the formation of massive cores of giant planets before the dissipation of protoplanetary disks. On the other hand, the existence of pressure maxima in the disk could act as migration traps and locations for solid material accumulation, favoring the formation of massive cores. Aims. We aim to study the radial drift of pebbles and planetesimals and planet migration at pressure maxima in a protoplanetary disk and their implications for the formation of massive cores as triggering a gaseous runaway accretion phase. Methods. The time evolution of a viscosity driven accretion disk is solved numerically introducing a a dead zone as a low-viscosity region in the protoplanetary disk. A population of pebbles and planetesimals evolving by radial drift and accretion by the planets is also considered. Finally, the embryos embedded in the disk grow by the simultaneous accretion of pebbles, planetesimals, and the surrounding gas. Results. Our simulations show that the pressure maxima generated at the edges of the low-viscosity region of the disk act as planet migration traps, and that the pebble and planetesimal surface densities are significantly increased due to the radial drift towards pressure maxima locations. However, our simulations also show that migration-trap locations and solid-material-accumulation locations are not exactly at the same positions. Thus, a planet's semi-major axis oscillations around zero torque locations predicted by MHD and HD simulations are needed for the planet to accrete all the available material accumulated at the pressure maxima. Conclusions. Pressure maxima generated at the edges of a low-viscosity region of a protoplanetary disk seem to be preferential locations for the formation and trap of massive cores.Instituto de Astrofísica de La Plat

    Detailed survey of the phase space around Nix and Hydra

    Get PDF
    We present a detailed survey of the dynamical structure of the phase space around the new moons of the Pluto - Charon system. The spatial elliptic restricted three-body problem was used as model and stability maps were created by chaos indicators. The orbital elements of the moons are in the stable domain both on the semimajor axis - eccentricity and - inclination spaces. The structures related to the 4:1 and 6:1 mean motion resonances are clearly visible on the maps. They do not contain the positions of the moons, confirming previous studies. We showed the possibility that Nix might be in the 4:1 resonance if its argument of pericenter or longitude of node falls in a certain range. The results strongly suggest that Hydra is not in the 6:1 resonance for arbitrary values of the argument of pericenter or longitude of node.Comment: Published in MNRAS. 10 pages, 7 figures, 4 table

    Forecasting share price movements using news sentiment analysis in a multinational environment

    Get PDF
    Using a common definition we can define news analysis as the measurement of the various qualitative and quantitative elements of textual news stories. These elements include sentiment, relevance and novelty. By quantifying news stories we can gain a useful way to manipulate and use everyday information in a mathematically concise manner. In this article a framework for news analytics techniques used in finance is provided. Various news analytic methods and software are discussed, and a set of metrics is given that may be applied to assess the performance of analytics. Various directions for this field are discussed. The proposed methods can help the valuation and trading of securities, facilitate investment decision making, meet regulatory requirements, or manage risk
    corecore