451 research outputs found

    Guidance for design and endpoints of clinical trials in chronic hepatitis B - Report from the 2019 EASL-AASLD HBV Treatment Endpoints Conference.

    Get PDF
    Representatives from academia, industry, regulatory agencies, and patient groups convened in March 2019 with the primary goal of developing agreement on chronic hepatitis B virus (HBV) treatment endpoints to guide clinical trials aiming to 'cure' HBV. Agreement among the conference participants was reached on some key points. 'Functional' but not sterilizing cure is achievable and should be defined as sustained HBsAg loss in addition to undetectable HBV DNA 6 months post-treatment. The primary endpoint of phase 3 trials should be functional cure; HBsAg loss in ≥30% of patients was suggested as an acceptable rate of response in these trials. Sustained virologic suppression (undetectable serum HBV DNA) without HBsAg loss, 6 months after discontinuation of treatment would be an intermediate goal. Demonstrated validity in predicting sustained HBsAg loss was considered the most appropriate criterion for the approval of new HBV assays to determine efficacy endpoints. Clinical trials aimed at HBV functional cure should initially focus on patients with HBeAg-positive and HBeAg-negative chronic hepatitis, treatment-naïve or virally suppressed on nucleos(t)ide analogues. A hepatitis flare associated with increase in bilirubin or INR should prompt temporary or permanent cessation of investigational treatment. New treatments must be as safe as existing nucleos(t)ide analogues. The primary endpoint for phase 3 trials for hepatitis D virus (HDV) co-infection should be undetectable serum HDV RNA 6 months after stopping treatment. On treatment HDV RNA suppression associated with normalization of ALT is considered an intermediate goal. CONCLUSION: For HBV 'functional cure', sustained HBsAg loss with undetectable HBV DNA after completion of treatment is the primary goal and sustained undetectable HBV DNA without HBsAg loss after stopping treatment an intermediate goal

    Genome-wide identification of direct HBx genomic targets

    Get PDF
    Background: The Hepatitis B Virus (HBV) HBx regulatory protein is required for HBV replication and involved in HBV-related carcinogenesis. HBx interacts with chromatin modifying enzymes and transcription factors to modulate histone post-translational modifications and to regulate viral cccDNA transcription and cellular gene expression. Aiming to identify genes and non-coding RNAs (ncRNAs) directly targeted by HBx, we performed a chromatin immunoprecipitation sequencing (ChIP-Seq) to analyse HBV recruitment on host cell chromatin in cells replicating HBV. Results: ChIP-Seq high throughput sequencing of HBx-bound fragments was used to obtain a high-resolution, unbiased, mapping of HBx binding sites across the genome in HBV replicating cells. Protein-coding genes and ncRNAs involved in cell metabolism, chromatin dynamics and cancer were enriched among HBx targets together with genes/ncRNAs known to modulate HBV replication. The direct transcriptional activation of genes/miRNAs that potentiate endocytosis (Ras-related in brain (RAB) GTPase family) and autophagy (autophagy related (ATG) genes, beclin-1, miR-33a) and the transcriptional repression of microRNAs (miR-138, miR-224, miR-576, miR-596) that directly target the HBV pgRNA and would inhibit HBV replication, contribute to HBx-mediated increase of HBV replication. Conclusions: Our ChIP-Seq analysis of HBx genome wide chromatin recruitment defined the repertoire of genes and ncRNAs directly targeted by HBx and led to the identification of new mechanisms by which HBx positively regulates cccDNA transcription and HBV replication

    Viral Resistance in Hepatitis B: Prevalence and Management

    Get PDF
    Hepatitis B is a DNA virus affecting hundreds of millions of individuals worldwide. As the clinical sequelae of cirrhosis and hepatocellular cancer are increasingly recognized to be related to viral levels, the impetus increases to offer treatment to those previously not treated. With the development of more robust antivirals with reasonable safety profiles, long-term treatment is becoming more common. The oral nucleos(t)ide analogs have become the preferred first-line therapies for most genotypes of hepatitis B. Five are now available, all with different potencies and resistance profiles. Long-term data spanning several years are now available for most compounds in this arena. This article focuses on the common natural variants and those secondary to nucleos(t)ide therapy, as well as diagnostic methods to detect resistance

    The scientific basis of combination therapy for chronic hepatitis B functional cure

    Get PDF
    Functional cure of chronic hepatitis B (CHB) — or hepatitis B surface antigen (HBsAg) loss after 24 weeks off therapy — is now the goal of treatment, but is rarely achieved with current therapy. Understanding the hepatitis B virus (HBV) life cycle and immunological defects that lead to persistence can identify targets for novel therapy. Broadly, treatments fall into three categories: those that reduce viral replication, those that reduce antigen load and immunotherapies. Profound viral suppression alone does not achieve quantitative (q)HBsAg reduction or HBsAg loss. Combining nucleos(t)ide analogues and immunotherapy reduces qHBsAg levels and induces HBsAg loss in some patients, particularly those with low baseline qHBsAg levels. Even agents that are specifically designed to reduce viral antigen load might not be able to achieve sustained HBsAg loss when used alone. Thus, rationale exists for the use of combinations of all three therapy types. Monitoring during therapy is important not just to predict HBsAg loss but also to understand mechanisms of HBsAg loss using viral and immunological biomarkers, and in selected cases intrahepatic sampling. We consider various paths to functional cure of CHB and the need to individualize treatment of this heterogeneous infection until a therapeutic avenue for all patients with CHB is available

    Long-term quantitative hepatitis B surface antigen (HBsAg) trajectories in persons with and without HBsAg loss on tenofovir-containing antiretroviral therapy

    Get PDF
    OBJECTIVES Improving the understanding of the patterns of quantitative hepatitis B surface antigen (qHBsAg) trajectories associated with HBsAg loss is important in light of novel anti-hepatitis B virus agents being developed. We evaluated long-term qHBsAg trajectories in persons with HIV and HBV during tenofovir-containing antiretroviral therapy in the Swiss HIV Cohort Study. METHODS We included 29 participants with and 29 without HBsAg loss, defined as qHBsAg <0.05 IU/mL. We assessed qHBsAg decline during therapy in both groups and used agglomerative hierarchical clustering to identify different qHBsAg trajectory profiles in persons with HBsAg loss. RESULTS The median follow-up time was 11.9 years (IQR 8.4-14.1), and the median time to HBsAg loss was 48 months (IQR 12-96). Among participants with HBsAg loss, 79% had a qHBsAg decline ≥1 log10_{10} IU/mL 2 years after starting tenofovir. The trajectories in qHBsAg levels during tenofovir therapy were heterogeneous, characterized by five distinct profiles. Among participants without HBsAg loss, only 7% had a qHBsAg decline ≥1 log10_{10} IU/ml after 2 years. CONCLUSIONS Most persons with HIV who experienced HBsAg loss had an early decline in qHBsAg levels, with diverse trajectories during long-term tenofovir therapy. In persons without HBsAg loss, qHBsAg levels remained remarkably stable over time

    Human microRNA hsa-miR-125a-5p interferes with expression of hepatitis B virus surface antigen

    Get PDF
    MicroRNAs are small non-coding RNAs that modulate gene expression at post-transcriptional level, playing a crucial role in cell differentiation and development. Recently, some reports have shown that a limited number of mammalian microRNAs are also involved in anti-viral defense. In this study, the analysis of the hepatitis B virus (HBV) genome by the computer program MiRanda led to the identification of seven sites that are potential targets for human liver microRNAs. These sites were found to be clustered in a 995-bp segment within the viral polymerase ORF and the overlapping surface antigen ORF, and conserved among the most common HBV subtypes. The HBV genomic targets were then subjected to a validation test based on cultured hepatic cells (HepG2, HuH-7 and PLC/PRF/5) and luciferase reporter genes. In this test, one of the selected microRNAs, hsa-miR-125a-5p, was found to interact with the viral sequence and to suppress the reporter activity markedly. The microRNA was then shown to interfere with the viral translation, down-regulating the expression of the surface antigen. Overall, these results support the emerging concept that some mammalian microRNAs play a role in virus-host interaction. Furthermore, they provide the basis for the development of new strategies for anti-HBV intervention

    HBV quasispecies composition in Lamivudine-failed chronic hepatitis B patients and its influence on virological response to Tenofovir-based rescue therapy

    Get PDF
    The present study sought to evaluate the structure of HBV quasispecies in Lamivudine (LMV)-failed chronic hepatitis B (CHB) patients and its impact in defining the subsequent virological responses to Tenofovir (TDF)-based rescue-therapy. By analyzing HBV clones encompassing reverse transcriptase (RT) and surface (S) region from LMV-failed and treatment-naïve CHB patients, we identified 5 classical and 12 novel substitutions in HBV/RT and 9 substitutions in immune-epitopes of HBV/S that were significantly associated with LMV failure. In silico analysis showed spatial proximity of some of the newly-identified, mutated RT residues to the RT catalytic centre while most S-substitutions caused alteration in epitope hydrophobicity. TDF administration resulted in virological response in 60% of LMV-failed patients at 24-week but non-response in 40% of patients even after 48-weeks. Significantly high frequencies of 6 S-substitutions and one novel RT-substitution, rtH124N with 6.5-fold-reduced susceptibility to TDF in vitro, were noted at baseline in TDF non-responders than responders. Follow-up studies depicted greater evolutionary drift of HBV quasispecies and significant decline in frequencies of 3 RT and 6 S-substitutions in responder-subgroup after 24-week TDF-therapy while most variants persisted in non-responders. Thus, we identified the HBV-RT/S variants that could potentially predict unfavorable response to LMV/TDF-therapy and impede immune-mediated viral clearance

    Development of a new ultra sensitive real-time PCR assay (ultra sensitive RTQ-PCR) for the quantification of HBV-DNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Improved sensitivity of HBV-DNA tests is of critical importance for the management of HBV infection. Our aim was to develop and assess a new ultra sensitive in-house real-time PCR assay for HBV-DNA quantification (ultra sensitive RTQ-PCR).</p> <p>Results</p> <p>Previously used HBV-DNA standards were calibrated against the WHO 1<sup>st </sup>International Standard for HBV-DNA (OptiQuant<sup>® </sup>HBV-DNA Quantification Panel, Accrometrix Europe B.V.). The 95% and 50% HBV-DNA detection end-point of the assay were 22.2 and 8.4 IU/mL. According to the calibration results, 1 IU/mL equals 2.8 copies/mL. Importantly the clinical performance of the ultra sensitive real-time PCR was tested similar (67%) to the Procleix Ultrio discriminatory HBV test (dHBV) (70%) in low-titer samples from patients with occult Hepatitis B. Finally, in the comparison of ultra sensitive RTQ-PCR with the commercially available COBAS TaqMan HBV Test, the in-house assay identified 94.7% of the 94 specimens as positive versus 90.4% identified by TaqMan, while the quantitative results that were positive by both assay were strongly correlated (<it>r </it>= 0.979).</p> <p>Conclusions</p> <p>We report a new ultra sensitive real time PCR molecular beacon based assay with remarkable analytical and clinical sensitivity, calibrated against the WHO 1<sup>st </sup>International standard.</p

    Hepatitis B Virus Genotype Study in West Africa Reveals an Expanding Clade of Subgenotype A4

    Get PDF
    Hepatitis B virus (HBV) classification comprises up to 10 genotypes with specific geographical distribution worldwide, further subdivided into 40 subgenotypes, which have different impacts on liver disease outcome. Though extensively studied, the classification of subgenotype A sequences remains ambiguous. This study aimed to characterize HBV isolates from West African patients and propose a more advanced classification of subgenotype A. Fourteen HBV full-length genome sequences isolated from patients from The Gambia and Senegal were obtained and phylogenetically analyzed. Phylogenetic analysis of HBV genotype A sequences isolated from Senegalese and Gambian patients exhibited separate clusters from the other known and confirmed subgenotypes A (A1, A2, A6). Most of the sequences (10/14) clustered with an isolate from Cuba, reported as subgenotype A4 (supported by maximal bootstrap value). Four isolates from The Gambia and Senegal clustered separately from all other subgenotypes and samples sequenced in the study. Three of which from The Gambia, designated as an expanding clade of subgenotype A4, exhibited a mean inter-subgenotypic nucleotide divergence over the entire genome sequence higher than 4% in comparison with the other subgenotypes and the other isolates sequenced in the study, except with subgenotype A4 isolates (3.9%), and this was supported by a maximal bootstrap value. The last one from Senegal seemed to be an expanding subgenotype close to the new clade of A4. Amino acid analysis unveiled a novel motif specific to these isolates. This study revealed an expanding evolution of HBV subgenotype A and novel amino acid motifs. It also highlighted the need for a consensus regarding the analysis and classification of HBV sequence
    corecore