71 research outputs found

    Evaluation of the global association between cholesterol-associated polymorphisms and Alzheimer's disease suggests a role for rs3846662 and HMGCR splicing in disease risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNP)s that are essentially unequivocally associated with peripheral cholesterol. Since the alleles of the <it>APOE </it>gene, which modulate peripheral cholesterol metabolism, and midlife plasma cholesterol are both associated with Alzheimer's disease (AD) risk, we have evaluated the hypothesis that SNPs associated with plasma cholesterol are also associated with AD.</p> <p>Results</p> <p>Seventeen non-<it>APOE </it>SNPs reproducibly associated with cholesterol per GWAS were tested for association with AD in ~2,000 AD and ~4,000 non-AD subjects. As a group, these SNPs are associated with AD. Two SNPs in particular, rs3846662 and rs1532085, are associated with AD risk and age-of-onset. Additionally, rs3846662 was associated with <it>HMGCR </it>exon 13 splicing in human liver but not brain, possibly obscured by CNS cell-type heterogeneity. However, rs3846662 was associated with <it>HMGCR </it>exon 13 splicing in liver- and brain-derived cell lines.</p> <p>Conclusions</p> <p>Cholesterol-associated SNPs outside of <it>APOE </it>confer a global risk for AD. Rs3846662 and rs1532085 are associated with both AD risk and age-of-onset. Rs3846662 is associated with <it>HMGCR </it>exon 13 inclusion. Since rs3846662 affects AD risk and age-of-onset as well as statin responsiveness, this SNP may confound clinical trials evaluating the protective effects of statins on AD.</p

    Rheumatoid arthritis-associated polymorphisms are not protective against Alzheimer's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rheumatoid arthritis (RA) and Alzheimer's disease (AD) are inversely associated. To test the hypothesis that genetic elements associated with increased RA risk are associated with decreased AD risk, we evaluated RA genetic risk factors recently identified in genome-wide association studies (GWAS) for their association with AD in a two-stage, case-control analysis.</p> <p>Results</p> <p>In our Stage 1 analysis of ~800 AD and ~1,200 non-AD individuals, three of seventeen RA-associated SNPs were nominally associated with AD (p < 0.05) with one SNP, rs2837960, retaining significance after correction for multiple testing (p = 0.03). The rs2837960_G (minor) allele, which is associated with increased RA risk, was associated with increased AD risk. Analysis of these three SNPs in a Stage 2 population, consisting of ~1,100 AD and ~2,600 non-AD individuals, did not confirm their association with AD. Analysis of Stage 1 and 2 combined suggested that rs2837960 shows a trend for association with AD. When the Stage 2 population was age-matched for the Stage 1 population, rs2837960 exhibited a non-significant trend with AD. Combined analysis of Stage 1 and the age-matched Stage 2 subset showed a significant association of rs2837960 with AD (p = 0.002, OR 1.24) that retained significance following correction for age, sex and APOE (p = 0.02, OR = 1.20). Rs2837960 is near <it>BACE2</it>, which encodes an aspartic protease capable of processing the AD-associated amyloid precursor protein. Testing for an association between rs2837960 and the expression of <it>BACE2 </it>isoforms in human brain, we observed a trend between rs2837960 and the total expression of <it>BACE2 </it>and the expression of a <it>BACE2 </it>transcript lacking exon 7 (p = 0.07 and 0.10, respectively).</p> <p>Conclusions</p> <p>RA-associated SNPs are generally not associated with AD. Moreover, rs2837960_G is associated with increased risk of both RA and, in individuals less than 80 years of age, with AD. Overall, these results contest the hypothesis that genetic variants associated with RA confer protection against AD. Further investigation of rs2837960 is necessary to elucidate the mechanism by which rs2837960 contributes to both AD and RA risk, likely via modulation of <it>BACE2 </it>expression.</p

    Rheumatoid arthritis-associated polymorphisms are not protective against Alzheimer\u27s disease

    Get PDF
    BACKGROUND: Rheumatoid arthritis (RA) and Alzheimer\u27s disease (AD) are inversely associated. To test the hypothesis that genetic elements associated with increased RA risk are associated with decreased AD risk, we evaluated RA genetic risk factors recently identified in genome-wide association studies (GWAS) for their association with AD in a two-stage, case-control analysis. RESULTS: In our Stage 1 analysis of ~800 AD and ~1,200 non-AD individuals, three of seventeen RA-associated SNPs were nominally associated with AD (p \u3c 0.05) with one SNP, rs2837960, retaining significance after correction for multiple testing (p = 0.03). The rs2837960_G (minor) allele, which is associated with increased RA risk, was associated with increased AD risk. Analysis of these three SNPs in a Stage 2 population, consisting of ~1,100 AD and ~2,600 non-AD individuals, did not confirm their association with AD. Analysis of Stage 1 and 2 combined suggested that rs2837960 shows a trend for association with AD. When the Stage 2 population was age-matched for the Stage 1 population, rs2837960 exhibited a non-significant trend with AD. Combined analysis of Stage 1 and the age-matched Stage 2 subset showed a significant association of rs2837960 with AD (p = 0.002, OR 1.24) that retained significance following correction for age, sex and APOE (p = 0.02, OR = 1.20). Rs2837960 is near BACE2, which encodes an aspartic protease capable of processing the AD-associated amyloid precursor protein. Testing for an association between rs2837960 and the expression of BACE2 isoforms in human brain, we observed a trend between rs2837960 and the total expression of BACE2 and the expression of a BACE2 transcript lacking exon 7 (p = 0.07 and 0.10, respectively). CONCLUSIONS: RA-associated SNPs are generally not associated with AD. Moreover, rs2837960_G is associated with increased risk of both RA and, in individuals less than 80 years of age, with AD. Overall, these results contest the hypothesis that genetic variants associated with RA confer protection against AD. Further investigation of rs2837960 is necessary to elucidate the mechanism by which rs2837960 contributes to both AD and RA risk, likely via modulation of BACE2 expression

    Evaluation of the global association between cholesterol-associated polymorphisms and Alzheimer\u27s disease suggests a role for rs3846662 and \u3cem\u3eHMGCR\u3c/em\u3e splicing in disease risk

    Get PDF
    BACKGROUND: Recent genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNP)s that are essentially unequivocally associated with peripheral cholesterol. Since the alleles of the APOE gene, which modulate peripheral cholesterol metabolism, and midlife plasma cholesterol are both associated with Alzheimer\u27s disease (AD) risk, we have evaluated the hypothesis that SNPs associated with plasma cholesterol are also associated with AD. RESULTS: Seventeen non-APOE SNPs reproducibly associated with cholesterol per GWAS were tested for association with AD in ~2,000 AD and ~4,000 non-AD subjects. As a group, these SNPs are associated with AD. Two SNPs in particular, rs3846662 and rs1532085, are associated with AD risk and age-of-onset. Additionally, rs3846662 was associated with HMGCR exon 13 splicing in human liver but not brain, possibly obscured by CNS cell-type heterogeneity. However, rs3846662 was associated with HMGCR exon 13 splicing in liver- and brain-derived cell lines. CONCLUSIONS: Cholesterol-associated SNPs outside of APOE confer a global risk for AD. Rs3846662 and rs1532085 are associated with both AD risk and age-of-onset. Rs3846662 is associated with HMGCR exon 13 inclusion. Since rs3846662 affects AD risk and age-of-onset as well as statin responsiveness, this SNP may confound clinical trials evaluating the protective effects of statins on AD

    Replication of EPHA1 and CD33 associations with late-onset Alzheimer's disease: a multi-centre case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A recently published genome-wide association study (GWAS) of late-onset Alzheimer's disease (LOAD) revealed genome-wide significant association of variants in or near <it>MS4A4A, CD2AP, EPHA1 </it>and <it>CD33</it>. Meta-analyses of this and a previously published GWAS revealed significant association at <it>ABCA7 </it>and <it>MS4A</it>, independent evidence for association of <it>CD2AP, CD33 </it>and <it>EPHA1 </it>and an opposing yet significant association of a variant near <it>ARID5B</it>. In this study, we genotyped five variants (in or near <it>CD2AP, EPHA1, ARID5B</it>, and <it>CD33</it>) in a large (2,634 LOAD, 4,201 controls), independent dataset comprising six case-control series from the USA and Europe. We performed meta-analyses of the association of these variants with LOAD and tested for association using logistic regression adjusted by age-at-diagnosis, gender, and <it>APOE ε4 </it>dosage.</p> <p>Results</p> <p>We found no significant evidence of series heterogeneity. Associations with LOAD were successfully replicated for <it>EPHA1 </it>(rs11767557; OR = 0.87, p = 5 × 10<sup>-4</sup>) and <it>CD33 </it>(rs3865444; OR = 0.92, p = 0.049), with odds ratios comparable to those previously reported. Although the two <it>ARID5B </it>variants (rs2588969 and rs494288) showed significant association with LOAD in meta-analysis of our dataset (p = 0.046 and 0.008, respectively), the associations did not survive adjustment for covariates (p = 0.30 and 0.11, respectively). We had insufficient evidence in our data to support the association of the <it>CD2AP </it>variant (rs9349407, p = 0.56).</p> <p>Conclusions</p> <p>Our data overwhelmingly support the association of <it>EPHA1 </it>and <it>CD33 </it>variants with LOAD risk: addition of our data to the results previously reported (total n > 42,000) increased the strength of evidence for these variants, providing impressive p-values of 2.1 × 10<sup>-15 </sup>(<it>EPHA1</it>) and 1.8 × 10<sup>-13 </sup>(<it>CD33</it>).</p

    Delineating the genotypic and phenotypic spectrum of HECW2-related neurodevelopmental disorders

    Get PDF
    Background Variants in HECW2 have recently been reported to cause a neurodevelopmental disorder with hypotonia, seizures and impaired language; however, only six variants have been reported and the clinical characteristics have only broadly been defined. Methods Molecular and clinical data were collected from clinical and research cohorts. Massive parallel sequencing was performed and identified individuals with a HECW2-related neurodevelopmental disorder. Results We identified 13 novel missense variants in HECW2 in 22 unpublished cases, of which 18 were confirmed to have a de novo variant. In addition, we reviewed the genotypes and phenotypes of previously reported and new cases with HECW2 variants (n=35 cases). All variants identified are missense, and the majority of likely pathogenic and pathogenic variants are located in or near the C-terminal HECT domain (88.2%). We identified several clustered variants and four recurrent variants (p.(Arg1191Gln);p.(Asn1199Lys);p.(Phe1327Ser);p.(Arg1330Trp)). Two variants, (p.(Arg1191Gln);p.(Arg1330Trp)), accounted for 22.9% and 20% of cases, respectively. Clinical characterisation suggests complete penetrance for hypotonia with or without spasticity (100%), developmental delay/intellectual disability (100%) and developmental language disorder (100%). Other common features are behavioural problems (88.9%), vision problems (83.9%), motor coordination/movement (75%) and gastrointestinal issues (70%). Seizures were present in 61.3% of individuals. Genotype-phenotype analysis shows that HECT domain variants are more frequently associated with cortical visual impairment and gastrointestinal issues. Seizures were only observed in individuals with variants in or near the HECT domain. Conclusion We provide a comprehensive review and expansion of the genotypic and phenotypic spectrum of HECW2 disorders, aiding future molecular and clinical diagnosis and management.Peer reviewe

    Genetically-controlled Vesicle-Associated Membrane Protein 1 expression may contribute to Alzheimer’s pathophysiology and susceptibility

    Get PDF
    Background Alzheimer’s disease is a neurodegenerative disorder in which extracellular deposition of β-amyloid (Aβ) oligomers causes synaptic injury resulting in early memory loss, altered homeostasis, accumulation of hyperphosphorylated tau and cell death. Since proteins in the SNAP (Soluble N-ethylmaleimide-sensitive factor Attachment Protein) REceptors (SNARE) complex are essential for neuronal Aβ release at pre-synaptic terminals, we hypothesized that genetically controlled SNARE expression could alter neuronal Aß release at the synapse and hence play an early role in Alzheimer’s pathophysiology. Results Here we report 5 polymorphisms in Vesicle-Associated Membrane Protein 1 (VAMP1), a gene encoding a member of the SNARE complex, associated with bidirectionally altered cerebellar VAMP1 transcript levels (all p < 0.05). At the functional level, we demonstrated that control of VAMP1 expression by heterogeneous knockdown in mice resulted in up to 74% reduction in neuronal Aβ exocytosis (p < 0.001). We performed a case-control association study of the 5 VAMP1 expression regulating polymorphisms in 4,667 Alzheimer’s disease patients and 6,175 controls to determine their contribution to Alzheimer’s disease risk. We found that polymorphisms associated with increased brain VAMP1 transcript levels conferred higher risk for Alzheimer’s disease than those associated with lower VAMP1 transcript levels (p = 0.03). Moreover, we also report a modest protective association for a common VAMP1 polymorphism with Alzheimer’s disease risk (OR = 0.88, p = 0.03). This polymorphism was associated with decreased VAMP1 transcript levels (p = 0.02) and was functionally active in a dual luciferase reporter gene assay (p < 0.01). Conclusions Genetically regulated VAMP1 expression in the brain may modify both Alzheimer’s disease risk and may contribute to Alzheimer’s pathophysiology

    Truncating SRCAP variants outside the Floating-Harbor syndrome locus cause a distinct neurodevelopmental disorder with a specific DNA methylation signature

    Get PDF
    Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as "non-FLHS SRCAP-related NDD.'' All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP, there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations

    Linking protective GAB2 variants, increased cortical GAB2 expression and decreased Alzheimer's Disease pathology

    Get PDF
    GRB-associated binding protein 2 (GAB2) represents a compelling genome-wide association signal for late-onset Alzheimer’s disease (LOAD) with reported odds ratios (ORs) ranging from 0.75–0.85. We tested eight GAB2 variants in four North American Caucasian case-control series (2,316 LOAD, 2,538 controls) for association with LOAD. Meta-analyses revealed ORs ranging from (0.61–1.20) with no significant association (all p>0.32). Four variants were hetergeneous across the populations (all p<0.02) due to a potentially inflated effect size (OR = 0.61–0.66) only observed in the smallest series (702 LOAD, 209 controls). Despite the lack of association in our series, the previously reported protective association for GAB2 remained after meta-analyses of our data with all available previously published series (11,952-22,253 samples; OR = 0.82–0.88; all p<0.04). Using a freely available database of lymphoblastoid cell lines we found that protective GAB2 variants were associated with increased GAB2 expression (p = 9.5×10−7−9.3×10−6). We next measured GAB2 mRNA levels in 249 brains and found that decreased neurofibrillary tangle (r = −0.34, p = 0.0006) and senile plaque counts (r = −0.32, p = 0.001) were both good predictors of increased GAB2 mRNA levels albeit that sex (r = −0.28, p = 0.005) may have been a contributing factor. In summary, we hypothesise that GAB2 variants that are protective against LOAD in some populations may act functionally to increase GAB2 mRNA levels (in lymphoblastoid cells) and that increased GAB2 mRNA levels are associated with significantly decreased LOAD pathology. These findings support the hypothesis that Gab2 may protect neurons against LOAD but due to significant population heterogeneity, it is still unclear whether this protection is detectable at the genetic level
    corecore