19 research outputs found

    Rectal and vaginal immunization of mice with human papillomavirus L1 virus-like particles.

    No full text
    Human papillomavirus (HPV) vaccines based on L1 virus-like particle (VLP) can prevent genital HPV infection and associated lesions after three intramuscular injections. Needle-free administration might facilitate vaccine implementation, especially in developing countries. Here we have investigated rectal and vaginal administration of HPV16 L1 VLPs in mice and their ability to induce anti-VLP and HPV16-neutralizing antibodies in serum and in genital, rectal and oral secretions. Rectal and vaginal immunizations were not effective in the absence of adjuvant. Cholera toxin was able to enhance systemic and mucosal anti-VLPs responses after rectal immunization, but not after vaginal immunization. Rectal immunization with Resiquimod and to a lesser extent Imiquimod, but not monophosphoryl lipid A, induced anti-HPV16 VLP antibodies in serum and secretions. Vaginal immunization was immunogenic only if administered in mice treated with nonoxynol-9, a disrupter of the cervico-vaginal epithelium. Our findings show that rectal and vaginal administration of VLPs can induce significant HPV16-neutralizing antibody levels in secretions, despite the fact that low titers are induced in serum. Imidazoquinolines, largely used to treat genital and anal warts, and nonoxonol-9, used as genital microbicide/spermicide were identified as adjuvants that could be safely used by the rectal or vaginal route, respectively

    A tyrosine-based sorting signal is involved in connexin43 stability and gap junction turnover

    No full text
    The gap junction protein connexin43 is known to have a rapid turnover, involving degradation by both the proteasomal and lysosomal systems, but the structural features of connexin43 that govern these actions are not known. The connexin43 C-terminal sequence contains a proline-rich region corresponding to the consensus of a protein-protein interaction PY-motif (xPPxY), and an overlapping putative tyrosine-based sorting signal (Yxxphi; =hydrophobic), known to play a role in the intracellular trafficking of many membrane proteins. As both motifs may control turnover of connexin43, we used a combination of metabolic radiolabelling, immuno-precipitation and functional assays to determine the possible role of these motifs in controlling degradation of human connexin43 expressed in SKHep1 cells. Mutation V289D in the tyrosine-based sorting motif increased the steady-state pool of connexin43 by approximately 3.5-fold, while mutation P283L in the PY-motif produced a comparatively modest augmentation (1.7-fold). No additive effect was observed when the overlapping tyrosine was mutated. In pulse-chase experiments, the Y286A substitution increased the half-life of connexin43 from 2 to 6 hours, indicating that the increased steady-state levels reflected reduced protein degradation. Moreover, expression at the junctional membrane, as well as gap junction-mediated intercellular communication (GJC), were nearly abolished by lysosomal inhibitors and Brefeldin A in cells expressing wild-type connexin43, but were unaffected in the tyrosine mutant. These results provide strong evidence that the tyrosine-based motif of human connexin43 is a prime determinant controlling connexin43 stability, and consequently GJC, by targeting connexin43 for degradation in the endocytic/lysosomal compartment

    Brain Surface Segmentation of Magnetic Resonance Images of the Fetus

    No full text
    In this work we present a method for the image analysisof Magnetic Resonance Imaging (MRI) of fetuses. Our goalis to segment the brain surface from multiple volumes(axial, coronal and sagittal acquisitions) of a fetus. Tothis end we propose a two-step approach: first, a FiniteGaussian Mixture Model (FGMM) will segment the image into3 classes: brain, non-brain and mixture voxels. Second, aMarkov Random Field scheme will be applied tore-distribute mixture voxels into either brain ornon-brain tissue. Our main contributions are an adaptedenergy computation and an extended neighborhood frommultiple volumes in the MRF step. Preliminary results onfour fetuses of different gestational ages will be shown

    Whole-soil warming decreases abundance and modifies the community structure of microorganisms in the subsoil but not in surface soil

    Get PDF
    International audienceAbstract. The microbial community composition in subsoils remains understudied, and it is largely unknown whether subsoil microorganisms show a similar response to global warming as microorganisms at the soil surface do. Since microorganisms are the key drivers of soil organic carbon decomposition, this knowledge gap causes uncertainty in the predictions of future carbon cycling in the subsoil carbon pool (> 50 % of the soil organic carbon stocks are below 30 cm soil depth). In the Blodgett Forest field warming experiment (California, USA) we investigated how +4 ∘C warming in the whole-soil profile to 100 cm soil depth for 4.5 years has affected the abundance and community structure of microorganisms. We used proxies for bulk microbial biomass carbon (MBC) and functional microbial groups based on lipid biomarkers, such as phospholipid fatty acids (PLFAs) and branched glycerol dialkyl glycerol tetraethers (brGDGTs). With depth, the microbial biomass decreased and the community composition changed. Our results show that the concentration of PLFAs decreased with warming in the subsoil (below 30 cm) by 28 % but was not affected in the topsoil. Phospholipid fatty acid concentrations changed in concert with soil organic carbon. The microbial community response to warming was depth dependent. The relative abundance of Actinobacteria increased in warmed subsoil, and Gram+ bacteria in subsoils adapted their cell membrane structure to warming-induced stress, as indicated by the ratio of anteiso to iso branched PLFAs. Our results show for the first time that subsoil microorganisms can be more affected by warming compared to topsoil microorganisms. These microbial responses could be explained by the observed decrease in subsoil organic carbon concentrations in the warmed plots. A decrease in microbial abundance in warmed subsoils might reduce the magnitude of the respiration response over time. The shift in the subsoil microbial community towards more Actinobacteria might disproportionately enhance the degradation of previously stable subsoil carbon, as this group is able to metabolize complex carbon sources
    corecore