1,205 research outputs found

    The competitor release effect applied to carnivore species: how red foxes can increase in numbers when persecuted

    Get PDF
    The objective of our study was to numerically simulate the population dynamics of a hypothetical community of three species of small to medium–sized carnivores subjected to non–selective control within the context of the competitor release effect (CRE). We applied the CRE to three carnivore species, linking interspecific competition with predator control efforts. We predicted the population response of European badger, the red fox and the pine marten to this wildlife management tool by means of numerical simulations. The theoretical responses differed depending on the intrinsic rate of growth (r), although modulated by the competition coefficients. The red fox, showing the highest r value, can increase its populations despite predator control efforts if control intensity is moderate. Populations of the other two species, however, decreased with control efforts, even reaching extinction. Three additional theoretical predictions were obtained. The conclusions from the simulations were: 1) predator control can play a role in altering the carnivore communities; 2) red fox numbers can increase due to control; and 3) predator control programs should evaluate the potential of unintended effects on ecosystems

    Hyper-reduction for Petrov-Galerkin reduced order models

    Full text link
    Projection-based Reduced Order Models minimize the discrete residual of a "full order model" (FOM) while constraining the unknowns to a reduced dimension space. For problems with symmetric positive definite (SPD) Jacobians, this is optimally achieved by projecting the full order residual onto the approximation basis (Galerkin Projection). This is sub-optimal for non-SPD Jacobians as it only minimizes the projection of the residual, not the residual itself. An alternative is to directly minimize the 2-norm of the residual, achievable using QR factorization or the method of the normal equations (LSPG). The first approach involves constructing and factorizing a large matrix, while LSPG avoids this but requires constructing a product element by element, necessitating a complementary mesh and adding complexity to the hyper-reduction process. This work proposes an alternative based on Petrov-Galerkin minimization. We choose a left basis for a least-squares minimization on a reduced problem, ensuring the discrete full order residual is minimized. This is applicable to both SPD and non-SPD Jacobians, allowing element-by-element assembly, avoiding the use of a complementary mesh, and simplifying finite element implementation. The technique is suitable for hyper-reduction using the Empirical Cubature Method and is applicable in nonlinear reduction procedures

    Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions

    Get PDF
    Macromolecular crowding affects the activity of proteins and functional macromolecular complexes in all cells, including bacteria. Crowding, together with physicochemical parameters such as pH, ionic strength, and the energy status, influences the structure of the cytoplasm and thereby indirectly macromolecular function. Notably, crowding also promotes the formation of biomolecular condensates by phase separation, initially identified in eukaryotic cells but more recently discovered to play key functions in bacteria. Bacterial cells require a variety of mechanisms to maintain physicochemical homeostasis, in particular in environments with fluctuating conditions, and the formation of biomolecular condensates is emerging as one such mechanism. In this work, we connect physicochemical homeostasis and macromolecular crowding with the formation and function of biomolecular condensates in the bacterial cell and compare the supramolecular structures found in bacteria with those of eukaryotic cells. We focus on the effects of crowding and phase separation on the control of bacterial chromosome replication, segregation, and cell division, and we discuss the contribution of biomolecular condensates to bacterial cell fitness and adaptation to environmental stress

    Infectious Disease Risk Associated with Contaminated Propofol Anesthesia, 1989–2014

    Get PDF
    Administration of propofol, the most frequently used intravenous anesthetic worldwide, has been associated with several iatrogenic infections despite its relative safety. Little is known regarding the global epidemiology of propofol-related outbreaks and the effectiveness of existing preventive strategies. In this overview of the evidence of propofol as a source of infection and appraisal of preventive strategies, we identified 58 studies through a literature search in PubMed, Embase, and Lilacs for propofol-related infections during 1989–2014. Twenty propofol-related outbreaks have been reported, affecting 144 patients and resulting in 10 deaths. Related factors included reuse of syringes for multiple patients and prolonged exposure to the environment when vials were left open. The addition of antimicrobial drugs to the emulsion has been instituted in some countries, but outbreaks have still occurred. There remains a lack of comprehensive information on the effectiveness of measures to prevent future outbreaks

    Urea y pasta de soya como fuentes de nitrógeno para borregas gestantes

    Get PDF
    El presente trabajo realizado en el instituto de Investigaciones de Rowett en Aberdeen, Escocia, se llevó a cabo para estudiar el grado de utilización de una fuente de nitrógeno no proteico en comparación con una fuente convencional de proteína ofrecida
    corecore