566 research outputs found

    CRF(1) receptor antagonists attenuate escalated cocaine self-administration in rats

    Get PDF
    RATIONALE: Previous work suggests a role for stress-related corticotropin-releasing factor (CRF) systems in cocaine dependence. However, the involvement of activation of CRF(1) receptors in rats self-administering cocaine with extended access is unknown. OBJECTIVE: The current study examined whether CRF(1) receptor antagonist administration alters cocaine self-administration in animals given extended access. MATERIALS AND METHODS: Wistar rats (n = 32) acquired cocaine self-administration (0.66 mg/kg per infusion) in 1 h sessions for up to 11 days. Rats then were assigned to receive either daily short (1 h, ShA) or long (6 h, LgA) access to cocaine self-administration (n = 7-9 per group). Following escalation of intake, animals received one of two selective CRF(1) antagonists: antalarmin (6.3-25 mg/kg, i.p.) or N,N-bis(2-methoxyethyl)-3-(4-methoxy-2-methylphenyl)-2,5-dimethyl-pyrazolo[1,5a]pyrimidin-7-amine (MPZP; 3.6-27.5 mg/kg, s.c.). RESULTS: By day 11 of the escalation period, LgA rats increased their cocaine intake, reaching an intake level of 15.1 mg/kg, compared to 11.1 mg/kg in ShA rats, during the first hour of sessions. Antalarmin reduced cocaine self-administration at the highest dose selectively in the LgA group but not the ShA group. MPZP reduced cocaine intake both in LgA and ShA rats. However, MPZP did so at a lower dose in LgA rats than in ShA rats. Within the LgA group, MPZP decreased cocaine intake in the first 10 min (loading phase) as well as in the latter session intake (maintenance phase). CONCLUSION: The data suggest that hypersensitivity of the CRF system occurs with extended access to cocaine self-administration and that this altered CRF system may contribute to the increased motivation to self-administer cocaine that develops during psychostimulant dependence

    Human Urocortin 2, a Corticotropin-Releasing Factor (CRF) 2

    Full text link

    Genotype and phenotype correlations in diabetic patients in Uruguay

    Full text link
    ABSTRACT. To differentiate among different types of diabetes is becom-ing an increasingly challenging task. We investigated whether the patient’s genetic profile is useful to identify the particular type of diabetes, to deter-mine the corresponding hyperglycemia pathogenesis and treat accordingly. Three hundred and thirty-eight diabetic patients, diagnosed according to American Diabetes Association criteria, were recruited from 2004 to 2008 in diabetes health reference centers. We analyzed the major gene for type 1 diabetes susceptibility (HLA DQ/DR). In order to improve our understand-ing of the pathogenesis of the resulting hyperglycemia and to implement a more adequate treatment for the patients, we reclassified our sample ac-1353 ©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 8 (4): 1352-1358 (2009) Genotype and phenotype correlations in diabetic patients cording to the presence or absence of the genetic markers. We found that a higher percentage of people than expected have immunological disease, in

    Kinetic modelling of competition and depletion of shared miRNAs by competing endogenous RNAs

    Full text link
    Non-conding RNAs play a key role in the post-transcriptional regulation of mRNA translation and turnover in eukaryotes. miRNAs, in particular, interact with their target RNAs through protein-mediated, sequence-specific binding, giving rise to extended and highly heterogeneous miRNA-RNA interaction networks. Within such networks, competition to bind miRNAs can generate an effective positive coupling between their targets. Competing endogenous RNAs (ceRNAs) can in turn regulate each other through miRNA-mediated crosstalk. Albeit potentially weak, ceRNA interactions can occur both dynamically, affecting e.g. the regulatory clock, and at stationarity, in which case ceRNA networks as a whole can be implicated in the composition of the cell's proteome. Many features of ceRNA interactions, including the conditions under which they become significant, can be unraveled by mathematical and in silico models. We review the understanding of the ceRNA effect obtained within such frameworks, focusing on the methods employed to quantify it, its role in the processing of gene expression noise, and how network topology can determine its reach.Comment: review article, 29 pages, 7 figure

    Human urocortin II, a selective agonist for the type 2 corticotropinreleasing factor receptor, decreases feeding and drinking in the rat

    Get PDF
    ABSTRACT Corticotropin-releasing factor (CRF) has been hypothesized to modulate consummatory behavior through the Type 2 CRF (CRF 2 ) receptor. However, behavioral functions subserved by the CRF 2 receptor remain poorly understood. Recently, human urocortin II (hUcn II), a selective CRF 2 receptor agonist, was identified. To study the effects of this neuropeptide on ingestive behavior, we examined the effects of centrally infused hUcn II (i.c.v. 0, 0.01, 0.1, 1.0, 10.0 g) on the microstructure of nosepoke responding for food and water in nondeprived, male rats. Malaise-inducing properties of the peptide were monitored using conditioned taste aversion (CTA) testing. To identify potential sites of action, central induction of Fos protein expression was examined. hUcn II dose dependently reduced the quantity and duration of responding for food and water at doses lower (0.01-1.0 g) than that forming a CTA (10 g). Effects were most evident during hours 4 to 6 of the dark cycle. Meal pattern analysis showed that hUcn II potently (0.1 g) increased the satiating value of food. Rats ate and drank smaller and shorter meals without changing meal frequency. Rats also ate more slowly. hUcn II induced Fos in regions involved in visceral sensory processing and autonomic/neuroendocrine regulation and resembling those activated by appetite suppressants. hUcn II is a promising neuropeptide for investigating the role of the CRF 2 receptor in ingestive behavior. Corticotropin-releasing factor (CRF) is hypothesized to mediate behavioral, autonomic, endocrine, and immunological responses to stres

    Regulatory feedback response mechanisms to phosphate starvation in rice

    Get PDF
    Phosphorus is a growth-limiting nutrient for plants. The growing scarcity of phosphate stocks threatens global food security. Phosphate-uptake regulation is so complex and incompletely known that attempts to improve phosphorus use efficiency have had extremely limited success. This study improves our understanding of the molecular mechanisms underlying phosphate uptake by investigating the transcriptional dynamics of two regulators: the Ubiquitin ligase PHO2 and the long non-coding RNA IPS1. Temporal measurements of RNA levels have been integrated into mechanistic mathematical models using advanced statistical techniques. Models based solely on current knowledge could not adequately explain the temporal expression profiles. Further modeling and bioinformatics analysis have led to the prediction of three regulatory features: the PHO2 protein mediates the degradation of its own transcriptional activator to maintain constant PHO2 mRNA levels; the binding affinity of the transcriptional activator of PHO2 is impaired by a phosphate-sensitive transcriptional repressor/inhibitor; and the extremely high levels of IPS1 and its rapid disappearance upon Pi re-supply are best explained by Pi-sensitive RNA protection. This work offers both new opportunities for plant phosphate research that will be essential for informing the development of phosphate efficient crop varieties, and a foundation for the development of models integrating phosphate with other stress responses

    Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato

    Get PDF
    Phenylpropanoids comprise an important class of plant secondary metabolites. A number of transcription factors have been used to upregulate-specific branches of phenylpropanoid metabolism, but by far the most effective has been the fruit-specific expression of AtMYB12 in tomato, which resulted in as much as 10% of fruit dry weight accumulating as flavonols and hydroxycinnamates. We show that AtMYB12 not only increases the demand of flavonoid biosynthesis but also increases the supply of carbon from primary metabolism, energy and reducing power, which may fuel the shikimate and phenylalanine biosynthetic pathways to supply more aromatic amino acids for secondary metabolism. AtMYB12 directly binds promoters of genes encoding enzymes of primary metabolism. The enhanced supply of precursors, energy and reducing power achieved by AtMYB12 expression can be harnessed to engineer high levels of novel phenylpropanoids in tomato fruit, offering an effective production system for bioactives and other high value ingredients

    The impact of life tables adjusted for smoking on the socio-economic difference in net survival for laryngeal and lung cancer.

    Get PDF
    BACKGROUND: Net survival is a key measure in cancer control, but estimates for cancers that are strongly associated with smoking may be biased. General population life tables represent background mortality in net survival, but may not adequately reflect the higher mortality experienced by smokers. METHODS: Life tables adjusted for smoking were developed, and their impact on net survival and inequalities in net survival for laryngeal and lung cancers was examined. RESULTS: The 5-year net survival estimated with smoking-adjusted life tables was consistently higher than the survival estimated with unadjusted life tables: 7% higher for laryngeal cancer and 1.5% higher for lung cancer. The impact of using smoking-adjusted life tables was more pronounced in affluent patients; the deprivation gap in 5-year net survival for laryngeal cancer widened by 3%, from 11% to 14%. CONCLUSIONS: Using smoking-adjusted life tables to estimate net survival has only a small impact on the deprivation gap in survival, even when inequalities are substantial. Adjusting for the higher, smoking-related background mortality did increase the estimates of net survival for all deprivation groups, and may be more important when measuring the public health impact of differences or changes in survival, such as avoidable deaths or crude probabilities of death

    Isolation, Characterization and Lipid-Binding Properties of the Recalcitrant FtsA Division Protein from Escherichia coli

    Get PDF
    We have obtained milligram amounts of highly pure Escherichia coli division protein FtsA from inclusion bodies with an optimized purification method that, by overcoming the reluctance of FtsA to be purified, surmounts a bottleneck for the analysis of the molecular basis of FtsA function. Purified FtsA is folded, mostly monomeric and interacts with lipids. The apparent affinity of FtsA binding to the inner membrane is ten-fold higher than to phospholipids, suggesting that inner membrane proteins could modulate FtsA-membrane interactions. Binding of FtsA to lipids and membranes is insensitive to ionic strength, indicating that a net contribution of hydrophobic interactions is involved in the association of FtsA to lipid/membrane structures
    corecore