13 research outputs found

    Designed Azolopyridinium Salts Block Protective Antigen Pores In Vitro and Protect Cells from Anthrax Toxin

    Get PDF
    Background:Several intracellular acting bacterial protein toxins of the AB-type, which are known to enter cells by endocytosis, are shown to produce channels. This holds true for protective antigen (PA), the binding component of the tripartite anthrax-toxin of Bacillus anthracis. Evidence has been presented that translocation of the enzymatic components of anthrax-toxin across the endosomal membrane of target cells and channel formation by the heptameric/octameric PA63 binding/translocation component are related phenomena. Chloroquine and some 4-aminoquinolones, known as potent drugs against Plasmodium falciparium infection of humans, block efficiently the PA63-channel in a dose dependent way.Methodology/Principal Findings:Here we demonstrate that related positively charged heterocyclic azolopyridinium salts block the PA63-channel in the μM range, when both, inhibitor and PA63 are added to the same side of the membrane, the cis-side, which corresponds to the lumen of acidified endosomal vesicles of target cells. Noise-analysis allowed the study of the kinetics of the plug formation by the heterocycles. In vivo experiments using J774A.1 macrophages demonstrated that the inhibitors of PA63-channel function also efficiently block intoxication of the cells by the combination lethal factor and PA63 in the same concentration range as they block the channels in vitro.Conclusions/Significance:These results strongly argue in favor of a transport of lethal factor through the PA63-channel and suggest that the heterocycles used in this study could represent attractive candidates for development of novel therapeutic strategies against anthrax. © 2013 Beitzinger et al

    Envenomations by Bothrops and Crotalus Snakes Induce the Release of Mitochondrial Alarmins

    Get PDF
    Skeletal muscle necrosis is a common manifestation of viperid snakebite envenomations. Venoms from snakes of the genus Bothrops, such as that of B. asper, induce muscle tissue damage at the site of venom injection, provoking severe local pathology which often results in permanent sequelae. In contrast, the venom of the South American rattlesnake Crotalus durissus terrificus, induces a clinical picture of systemic myotoxicity, i.e., rhabdomyolysis, together with neurotoxicity. It is known that molecules released from damaged muscle might act as ‘danger’ signals. These are known as ‘alarmins’, and contribute to the inflammatory reaction by activating the innate immune system. Here we show that the venoms of B. asper and C. d. terrificus release the mitochondrial markers mtDNA (from the matrix) and cytochrome c (Cyt c) from the intermembrane space, from ex vivo mouse tibialis anterior muscles. Cyt c was released to a similar extent by the two venoms whereas B. asper venom induced the release of higher amounts of mtDNA, thus reflecting hitherto some differences in their pathological action on muscle mitochondria. At variance, injection of these venoms in mice resulted in a different time-course of mtDNA release, with B. asper venom inducing an early onset increment in plasma levels and C. d. terrificus venom provoking a delayed release. We suggest that the release of mitochondrial ‘alarmins’ might contribute to the local and systemic inflammatory events characteristic of snakebite envenomations

    The adenylate cyclase toxins of Bacillus anthracis and Bordetella pertussis promote Th2 cell development by shaping T cell antigen receptor signaling.

    Get PDF
    The adjuvanticity of bacterial adenylate cyclase toxins has been ascribed to their capacity, largely mediated by cAMP, to modulate APC activation, resulting in the expression of Th2-driving cytokines. On the other hand, cAMP has been demonstrated to induce a Th2 bias when present during T cell priming, suggesting that bacterial cAMP elevating toxins may directly affect the Th1/Th2 balance. Here we have investigated the effects on human CD4(+) T cell differentiation of two adenylate cyclase toxins, Bacillus anthracis edema toxin (ET) and Bordetella pertussis CyaA, which differ in structure, mode of cell entry, and subcellular localization. We show that low concentrations of ET and CyaA, but not of their genetically detoxified adenylate cyclase defective counterparts, potently promote Th2 cell differentiation by inducing expression of the master Th2 transcription factors, c-maf and GATA-3. We also present evidence that the Th2-polarizing concentrations of ET and CyaA selectively inhibit TCR-dependent activation of Akt1, which is required for Th1 cell differentiation, while enhancing the activation of two TCR-signaling mediators, Vav1 and p38, implicated in Th2 cell differentiation. This is at variance from the immunosuppressive toxin concentrations, which interfere with the earliest step in TCR signaling, activation of the tyrosine kinase Lck, resulting in impaired CD3zeta phosphorylation and inhibition of TCR coupling to ZAP-70 and Erk activation. These results demonstrate that, notwithstanding their differences in their intracellular localization, which result in focalized cAMP production, both toxins directly affect the Th1/Th2 balance by interfering with the same steps in TCR signaling, and suggest that their adjuvanticity is likely to result from their combined effects on APC and CD4(+) T cells. Furthermore, our results strongly support the key role of cAMP in the adjuvanticity of these toxins

    cAMP imaging of cells treated with pertussis toxin, cholera toxin, and anthrax edema toxin

    No full text
    The enzymatic activity of the three most Studied bacterial toxins that increase the cytosolic cAMP level: pertussis toxin (PT), cholera toxin (CT), and anthrax edema toxin (ET), was imaged by fluorescence videomicroscopy. Three different cell lines were transfected with a fluorescence resonance energy transfer biosensor based on the PKA regulatory and catalytic subunits fused to CFP and YFP, respectively. Real-time imaging of cells expressing this cAMP biosensor provided time and space resolved Pictures of the toxins action. The time course of the PT-induced cAMP increase suggests that its active subunit enters the cytosol more rapidly than that deduced by biochemical experiments. ET generated cAMP concentration gradients decreasing from the nucleus to the cell periphery. On the contrary, CT, which acts on the plasma membrane adenylate cyclase, did not. The potential of imaging methods in studying the mode of entry and the intracellular action of bacterial toxins is discussed

    The treatment of metatarsalgia by minimally invasive surgery: A cross-sectional study

    No full text
    Introduction: Minimally invasive surgery (MIS) is one of the most innovative approaches for the treatment of metatarsalgia. This cross-sectional study aims to analyse the clinical and radiological outcomes of patients treated for metatarsalgia by this technique and to evaluate their results in relation to the Maestro formula. Methods: Patients between 18 and 80 years, affected by metatarsalgia and treated by percutaneous oblique osteotomies, were included in this study. All patients were assessed radiographically and clinically with internationally validated scales: SF-36, AOFAS, 17-FFI, MOXFQ and VAS. Both outcomes were evaluated in relation to the restoration of the Maestro formula. Statistical analysis was performed and its significance was set at p < 0.05. Results: A total of 91 patients (mean age 51.6 years, M:F = 13:78) with a mean follow-up of 3.9 years (range 2 to 7 years) were evaluated. MIS bone osteotomies were completely healed at a mean time of 3.3 months. We observed significant functional improvement after surgery of all parameters considered in our analysis: AOFAS (84.1 vs. 48.6); 17-FFI (43.2 vs. 7.8); MOXFQ-Pain (11.4 vs. 2.1); MOXFQ-Walking (15.7 vs. 3.9) and MOXFQ-Social (4.8 vs. 0.8). However, the Maestro formula did not improve significantly at last follow-up. Complications occurred in 17 cases and 3 patients required a second operation. Mean VAS satisfaction was 7.785 at last follow-up. Conclusions: MIS has significantly improved the clinical-functional outcomes of patients with metatarsalgia, even if the Maestro formula did not improve significantly.

    Mitochondrial alarmins released by degenerating motor axon terminals activate perisynaptic Schwann cells.

    No full text
    An acute and highly reproducible motor axon terminal degeneration followed by complete regeneration is induced by some animal presynaptic neurotoxins, representing an appropriate and controlled system to dissect the molecular mechanisms underlying degeneration and regeneration of peripheral nerve terminals. We have previously shown that nerve terminals exposed to spider or snake presynaptic neurotoxins degenerate as a result of calcium overload and mitochondrial failure. Here we show that toxin-treated primary neurons release signaling molecules derived from mitochondria: hydrogen peroxide, mitochondrial DNA, and cytochrome c. These molecules activate isolated primary Schwann cells, Schwann cells cocultured with neurons and at neuromuscular junction in vivo through the MAPK pathway. We propose that this inter- and intracellular signaling is involved in triggering the regeneration of peripheral nerve terminals affected by other forms of neurodegenerative diseases

    Membrane Translocation of Binary Actin-ADP-Ribosylating Toxins from Clostridium difficile and Clostridium perfringens Is Facilitated by Cyclophilin A and Hsp90 ▿

    No full text
    Some hypervirulent strains of Clostridium difficile produce the binary actin-ADP-ribosylating toxin C. difficile transferase (CDT) in addition to Rho-glucosylating toxins A and B. It has been suggested that the presence of CDT increases the severity of C. difficile-associated diseases, including pseudomembranous colitis. CDT contains a binding and translocation component, CDTb, that mediates the transport of the separate enzyme component CDTa into the cytosol of target cells, where CDTa modifies actin. Here we investigated the mechanism of cellular CDT uptake and found that bafilomycin A1 protects cultured epithelial cells from intoxication with CDT, implying that CDTa is translocated from acidified endosomal vesicles into the cytosol. Consistently, CDTa is translocated across the cytoplasmic membranes into the cytosol when cell-bound CDT is exposed to acidic medium. Radicicol and cyclosporine A, inhibitors of the heat shock protein Hsp90 and cyclophilins, respectively, protected cells from intoxication with CDT but not from intoxication with toxins A and B. Moreover, both inhibitors blocked the pH-dependent membrane translocation of CDTa, strongly suggesting that Hsp90 and cyclophilin are crucial for this process. In contrast, the inhibitors did not interfere with the ADP-ribosyltransferase activity, receptor binding, or endocytosis of the toxin. We obtained comparable results with the closely related iota-toxin from Clostridium perfringens. Moreover, CDTa and Ia, the enzyme component of iota-toxin, specifically bound to immobilized Hsp90 and cyclophilin A in vitro. In combination with our recently obtained data on the C2 toxin from C. botulinum, these results imply a common Hsp90/cyclophilin A-dependent translocation mechanism for the family of binary actin-ADP-ribosylating toxins
    corecore