1,868 research outputs found

    Mutual Fund Tournaments: Evidence From Global And International Funds

    Get PDF
    For a sample of global and international equity mutual funds, we test the proposition that managers likely to end up as losers manipulate fund risk differently from interim winners. In contrast with Brown, Harlow, and Starks (1996) who found robust support for the tournament model, we found no evidence of tournament like behavior for international and global mutual funds. A possible explanation of this behavior is that investors in these funds are primarily seeking diversification and therefore are less sensitive to relative performance

    Characterization of the South Atlantic marine boundary layer aerosol using an Aerodyne Aerosol Mass Spectrometer

    No full text
    International audienceMeasurements of the submicron fraction of the atmospheric aerosol in the marine boundary layer were performed from January to March 2007 (Southern Hemisphere summer) onboard the French research vessel Marion Dufresne in the Southern Atlantic and Indian Ocean (20° S?60° S, 70° W?60° E). For chemical composition measurements an Aerodyne High-Resolution-Time-of-Flight AMS was used to measure mass concentrations and species-resolved size distributions of non-refractory aerosol components in the submicron range. Within the "standard" AMS compounds (ammonium, chloride, nitrate, sulfate, organics) "sulfate" is the dominating species in the marine boundary layer reaching concentrations between 50 ng m?3 and 3 ?g m?3. Furthermore, what is seen as "sulfate" by the AMS seems to be mostly sulfuric acid. Another sulfur containing species that can ubiquitously be found in marine environments is methanesulfonic acid (MSA). Since MSA has not been directly measured before with an AMS, and is not part of the standard AMS analysis, laboratory experiments needed to be performed in order to be able to identify it within the AMS raw data and to extract mass concentrations for MSA from the field measurements. To identify characteristic air masses and their source regions backwards trajectories were used and averaged concentrations for AMS standard compounds were calculated for each air mass type. Sulfate mass size distributions were measured for these periods showing a distinct difference between oceanic air masses and those from African outflow. While the peak size in the mass distribution was roughly 250 nm in marine air masses it was shifted to 470 nm in African outflow air. Correlations between the mass concentrations of sulfate, organics and MSA were calculated which show a narrow correlation for MSA with sulfate/sulfuric acid coming from the ocean but not with continental sulfate

    Variability of aerosol, gaseous pollutants and meteorological characteristics associated with changes in air mass origin at the SW Atlantic coast of Iberia

    Get PDF
    Measurements of the ambient aerosol were performed at the Southern coast of Spain, within the framework of the DOMINO (<b>D</b>iel <b>O</b>xidant <b>M</b>echanisms <b>I</b>n relation to <b>N</b>itrogen <b>O</b>xides) project. The field campaign took place from 20 November until 9 December 2008 at the atmospheric research station "El Arenosillo" (37°5'47.76" N, 6°44'6.94" W). As the monitoring station is located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean, a variety of physical and chemical parameters of aerosols and gas phase could be characterized in dependency on the origin of air masses. Backwards trajectories were examined and compared with local meteorology to classify characteristic air mass types for several source regions. Aerosol number and mass as well as polycyclic aromatic hydrocarbons and black carbon concentrations were measured in PM<sub>1</sub> and size distributions were registered covering a size range from 7 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol (NR-PM<sub>1</sub>) was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase analyzers monitored various trace gases (O<sub>3</sub>, SO<sub>2</sub>, NO, NO<sub>2</sub>, CO<sub>2</sub>) and a weather station provided meteorological parameters. <br><br> Lowest average submicron particle mass and number concentrations were found in air masses arriving from the Atlantic Ocean with values around 2 μg m<sup>−3</sup> and 1000 cm<sup>−3</sup>. These mass concentrations were about two to four times lower than the values recorded in air masses of continental and urban origins. For some species PM<sub>1</sub>-fractions in marine air were significantly larger than in air masses originating from Huelva, a closely located city with extensive industrial activities. The largest fraction of sulfate (54%) was detected in marine air masses and was to a high degree not neutralized. In addition, small concentrations of methanesulfonic acid (MSA), a product of biogenic dimethyl sulfate (DMS) emissions, could be identified in the particle phase. <br><br> In all air masses passing the continent the organic aerosol fraction dominated the total NR-PM<sub>1</sub>. For this reason, using Positive Matrix Factorization (PMF) four organic aerosol (OA) classes that can be associated with various aerosol sources and components were identified: a highly-oxygenated OA is the major component (43% OA) while semi-volatile OA accounts for 23%. A hydrocarbon-like OA mainly resulting from industries, traffic and shipping emissions as well as particles from wood burning emissions also contribute to total OA and depend on the air mass origin. <br><br> A significant variability of ozone was observed that depends on the impact of different air mass types and solar radiation

    Investigating organic aerosol loading in the remote marine environment

    Get PDF
    Aerosol loading in the marine environment is investigated using aerosol composition measurements from several research ship campaigns (ICEALOT, MAP, RHaMBLe, VOCALS and OOMPH), observations of total AOD column from satellite (MODIS) and ship-based instruments (Maritime Aerosol Network, MAN), and a global chemical transport model (GEOS-Chem). This work represents the most comprehensive evaluation of oceanic OM emission inventories to date, by employing aerosol composition measurements obtained from campaigns with wide spatial and temporal coverage. The model underestimates AOD over the remote ocean on average by 0.02 (21 %), compared to satellite observations, but provides an unbiased simulation of ground-based Maritime Aerosol Network (MAN) observations. Comparison with cruise data demonstrates that the GEOS-Chem simulation of marine sulfate, with the mean observed values ranging between 0.22 μg m−3 and 1.34 μg m−3, is generally unbiased, however surface organic matter (OM) concentrations, with the mean observed concentrations between 0.07 μg m−3 and 0.77 μg m−3, are underestimated by a factor of 2–5 for the standard model run. Addition of a sub-micron marine OM source of approximately 9 TgC yr−1 brings the model into agreement with the ship-based measurements, however this additional OM source does not explain the model underestimate of marine AOD. The model underestimate of marine AOD is therefore likely the result of a combination of satellite retrieval bias and a missing marine aerosol source (which exhibits a different spatial pattern than existing aerosol in the model)

    Confinement effects on glass forming liquids probed by DMA

    Full text link
    Many molecular glass forming liquids show a shift of the glass transition T-g to lower temperatures when the liquid is confined into mesoporous host matrices. Two contrary explanations for this effect are given in literature: First, confinement induced acceleration of the dynamics of the molecules leads to an effective downshift of T-g increasing with decreasing pore size. Second, due to thermal mismatch between the liquid and the surrounding host matrix, negative pressure develops inside the pores with decreasing temperature, which also shifts T-g to lower temperatures. Here we present dynamic mechanical analysis measurements of the glass forming liquid salol in Vycor and Gelsil with pore sizes of d=2.6, 5.0 and 7.5 nm. The dynamic complex elastic susceptibility data can be consistently described with the assumption of two relaxation processes inside the pores: A surface induced slowed down relaxation due to interaction with rough pore interfaces and a second relaxation within the core of the pores. This core relaxation time is reduced with decreasing pore size d, leading to a downshift of T-g proportional to 1/d in perfect agreement with recent differential scanning calorimetry (DSC) measurements. Thermal expansion measurements of empty and salol filled mesoporous samples revealed that the contribution of negative pressure to the downshift of T-g is small (<30%) and the main effect is due to the suppression of dynamically correlated regions of size xi when the pore size xi approaches

    Exchange Monte Carlo Method and Application to Spin Glass Simulations

    Full text link
    We propose an efficient Monte Carlo algorithm for simulating a ``hardly-relaxing" system, in which many replicas with different temperatures are simultaneously simulated and a virtual process exchanging configurations of these replica is introduced. This exchange process is expected to let the system at low temperatures escape from a local minimum. By using this algorithm the three-dimensional ±J\pm J Ising spin glass model is studied. The ergodicity time in this method is found much smaller than that of the multi-canonical method. In particular the time correlation function almost follows an exponential decay whose relaxation time is comparable to the ergodicity time at low temperatures. It suggests that the system relaxes very rapidly through the exchange process even in the low temperature phase.Comment: 10 pages + uuencoded 5 Postscript figures, REVTe

    Normal table of Xenopus development: a new graphical resource

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zahn, N., James-Zorn, C., Ponferrada, V. G., Adams, D. S., Grzymkowski, J., Buchholz, D. R., Nascone-Yoder, N. M., Horb, M., Moody, S. A., Vize, P. D., & Zorn, A. M. Normal table of Xenopus development: a new graphical resource. Development, 149(14), (2022): dev200356, https://doi.org/10.1242/dev.200356.Normal tables of development are essential for studies of embryogenesis, serving as an important resource for model organisms, including the frog Xenopus laevis. Xenopus has long been used to study developmental and cell biology, and is an increasingly important model for human birth defects and disease, genomics, proteomics and toxicology. Scientists utilize Nieuwkoop and Faber's classic ‘Normal Table of Xenopus laevis (Daudin)’ and accompanying illustrations to enable experimental reproducibility and reuse the illustrations in new publications and teaching. However, it is no longer possible to obtain permission for these copyrighted illustrations. We present 133 new, high-quality illustrations of X. laevis development from fertilization to metamorphosis, with additional views that were not available in the original collection. All the images are available on Xenbase, the Xenopus knowledgebase (http://www.xenbase.org/entry/zahn.do), for download and reuse under an attributable, non-commercial creative commons license. Additionally, we have compiled a ‘Landmarks Table’ of key morphological features and marker gene expression that can be used to distinguish stages quickly and reliably (https://www.xenbase.org/entry/landmarks-table.do). This new open-access resource will facilitate Xenopus research and teaching in the decades to come.This work was supported by grants from the Eunice Kennedy Shriver National Institute of Child Health and Human Development [P41 HD064556 to A.M.Z. and P.D.V. (Xenbase)] and the National Institute of Child Health and Human Development [P40-OD010997 and R24-OD030008 to M.H. (National Xenopus Resource)]. Open Access funding provided by Cincinnati Children's Hospital Medical Center. Deposited in PMC for immediate release
    • …
    corecore