38 research outputs found

    RUNX2 Plays An Oncogenic Role in Esophageal Carcinoma by Activating the PI3K/AKT and ERK Signaling Pathways

    Get PDF
    Background/Aims: Esophageal carcinoma is a frequently occurring cancer at upper gastrointestinal tract. We aimed to evaluate the roles and possible mechanism of Runt Related Transcription Factor 2 (RUNX2) in the development of esophageal cancer. Methods: The expression of RUNX2 in esophageal carcinoma tissues and cells was investigated by qRT-PCR. Effects of RUNX2 on cell viability, apoptosis, migration and invasion were assessed using MTT assay, flow cytometry assay/western blot analysis, and Transwell assays, respectively. Afterwards, effects of RUNX2 on of the activation of the PI3K/AKT and ERK pathways were explored by Western blot analysis. In addition, a PI3K/AKT pathway inhibitor LY294002 and an ERK inhibitor U0126 were applied to further verify the regulatory relationship between RUNX2 and the PI3K/AKT and ERK signaling pathways. Besides, the RUNX2 function on tumor formation in vivo was investigated by tumor xenograft experiment. Results: The result showed that RUNX2 was highly expressed in esophageal carcinoma tissues and cells. Knockdown of RUNX2 significantly inhibited TE-1 and EC-109 cell viability, repressed TE-1 cell migration and invasion, and increased TE-1 cell apoptosis. RUNX2 overexpression showed the opposite effects on HET-1A cells. Moreover, RUNX2-mediated TE-1 cell viability, migration and invasion were associated with the activation of the PI3K/AKT and ERK pathways. Besides, knockdown of RUNX2 markedly suppressed tumor formation in vivo. Conclusion: Our results indicate that RUNX2 may play an oncogenic role in esophageal carcinoma by activating the PI3K/ AKT and ERK pathways. RUNX2 may serve as a potent target for the treatment of esophageal carcinoma

    Large Ecosystem Service Benefits of Assisted Natural Regeneration

    Get PDF
    China manages the largest monoculture plantations in the world, with 24% being Chinese fir plantations. Maximizing the ecosystem services of Chinese fir plantations has important implications in global carbon cycle and biodiversity protection. Assisted natural regeneration (ANR) is a practice to convert degraded lands into more productive forests with great ecosystems services. However, the quantitative understanding of ANR ecosystem service benefits is very limited. We conducted a comprehensive field manipulation experiment to evaluate the ANR potentials. We quantified and compared key ecosystem services including surface runoff, sediment yield, dissolved organic carbon export, plant diversity, and aboveground carbon accumulation of ANR of secondary forests dominated by Castanopsis carlesii to that of Chinese fir and C. carlesii plantations. Our results showed that ANR of C. carlesii forest reduced surface runoff and sediment yield up to 50% compared with other young plantations in the first 3 years and substantially increased plant diversity. ANR also reduced the export of dissolved organic carbon by 60–90% in the first 2 years. Aboveground biomass of the young ANR forest was approximately 3–4 times of that of other young plantations, while aboveground biomass of mature ANR forests was approximately 1.4 times of that of mature Chinese fir plantations of the same age. If all Chinese fir plantations in China were replaced by ANR forests, potentially 0.7 Pg more carbon will be stored in aboveground in one rotation (25 years). The results indicate that ANR triggers positive feedbacks among soil and water conservation, biodiversity protection, and biomass accumulation and thereby enhances ecosystem services

    National wetland mapping in China: a new product resulting from object-based and hierarchical classification of Landsat 8 OLI images

    Get PDF
    Spatially and thematically explicit information of wetlands is important to understanding ecosystem functions and services, as well as for establishment of management policy and implementation. However, accurate wetland mapping is limited due to lacking an operational classification system and an effective classification approach at a large scale. This study was aimed to map wetlands in China by developing a hybrid object-based and hierarchical classification approach (HOHC) and a new wetland classification system for remote sensing. Application of the hybrid approach and the wetland classification system to Landsat 8 Operational Land Imager data resulted in a wetland map of China with an overall classification accuracy of 95.1%. This national scale wetland map, so named CAS_Wetlands, reveals that China’s wetland area is estimated to be 451,084 ± 2014 km2, of which 70.5% is accounted by inland wetlands. Of the 14 sub-categories, inland marsh has the largest area (152,429 ± 373 km2), while coastal swamp has the smallest coverage (259 ± 15 km2). Geospatial variations in wetland areas at multiple scales indicate that China’s wetlands mostly present in Tibet, Qinghai, Inner Mongolia, Heilongjiang, and Xinjiang Provinces. This new map provides a new baseline data to establish multi-temporal and continuous datasets for China’s wetlands and biodiversity conservation

    Stability Analysis of Linear Systems under Time-Varying Samplings by a Non-Standard Discretization Method

    No full text
    This paper is concerned with the stability of linear systems under time-varying sampling. First, the closed-loop sampled-data system under study is represented by a discrete-time system using a non-standard discretization method. Second, by introducing a new sampled-date-based integral inequality, the sufficient condition on stability is formulated by using a simple Lyapunov function. The stability criterion has lower computational complexity, while having less conservatism compared with those obtained by a classical input delay approach. Third, when the system is subject to parameter uncertainties, a robust stability criterion is derived for uncertain systems under time-varying sampling. Finally, three examples are given to show the effectiveness of the proposed method

    Research progress of exosome lncRNA in liquid biopsy of colorectal cancer

    No full text
    The diagnostic methods for colorectal cancer (CRC) are still improving. Liquid biopsy mainly analyzes the specific components of biological liquid. Long chain noncoding RNA (lncRNA) from exosomes can be analyzed by liquid biopsy technology

    Design and Development of a Novel Ultrasonic Field Wetting Angle Measuring Instrument for Researching the Wetting of the Liquid–Solid Interface

    No full text
    A key technical problem in the preparation of Al-Ti-C grain refiner and other composite materials is the poor wetting of the Al-C interface, which greatly restricts the development of the preparation technology of related composite materials. In view of this scientific challenge, a novel ultrasonic field wetting angle measuring instrument has been designed to research the wetting behavior of the liquid–solid interface and ensure that preparation conditions are optimized. The dimensional parameters of the ultrasonic transducer and the horn in the novel ultrasonic wetting angle measuring instrument have been designed by theoretical calculation, and the modal analysis was performed for the ultrasonic horn using the functions of displacement and time. Modal analysis was utilized to optimize the dimension of the ultrasonic horn, and the natural frequency of the longitudinal vibration of the horn was reduced from 22,130 Hz to 22,013 Hz, resulting in an error rate between the actual value (22,013 Hz) and the design value (20 kHz) of less than 1%. In addition, the influence of different transition arc radiuses on the maximum stress of the optimized ultrasonic horn was analyzed

    Stability Analysis for Linear Systems with a Differentiable Time-Varying Delay via Auxiliary Equation-Based Method

    No full text
    This paper concentrates on the stability problem for linear systems with a differentiable time-varying delay via an auxiliary equation-based method. By supposing that the second-order derivative of the system state is available, an auxiliary equation is obtained. On the basis of the system equation and the auxiliary equation, we define a suitable delay-product-type augmented Lyapunov-Krasovskii functional (LKF), under which more delay and system state information can be exploited. Based on the LKF, by utilizing some vital lemmas, adding zero terms, and the convex analysis method, we propose a new stability condition that is less conservative. Finally, to illustrate the merit of the obtained stability condition, two typical numerical examples are given

    Extraction and Spatial–Temporal Evolution of Urban Fringes: A Case Study of Changchun in Jilin Province, China

    No full text
    An urban fringe area, depicted as a typical ecotone, is a region where both social and environmental problems are concentrated. Identifying and evaluating the spatial–temporal characteristics of urban fringe areas is significant for future development. On the basis of the land use data extracted from remote sensing data, the Shannon diversity index (SHDI) of each unit can be calculated, and identifying the urban fringe area by the breakpoint method is reliable. By using the rapidly growing Changchun as example, this study identifies the urban fringe of Changchun in 1995, 2005, and 2015 by applying the breakpoint method. The expansion amount, change mode, direction of expansion, landscape, and influence factors are evaluated. Policy and planning are the main factors influencing the development direction of the Changchun fringe area. The urban fringe area of Changchun City is extended to the east, southeast, and north. From 1995 to 2005, the outlying expansion was the dominant type. The main change mode was the infilling type due to the reduction of available land, from 2005 to 2015. In accordance with the landscape metrics, the landscape within the urban fringe transformed from fragmentation to regularization. The development of the urban fringe also transformed from a disorderly to an orderly manner

    One-Way Matching of Datasets with Low Rank Signals

    Full text link
    We study one-way matching of a pair of datasets with low rank signals. Under a stylized model, we first derive information-theoretic limits of matching. We then show that linear assignment with projected data achieves fast rates of convergence and sometimes even minimax rate optimality for this task. The theoretical error bounds are corroborated by simulated examples. Furthermore, we illustrate practical use of the matching procedure on two single-cell data examples.Comment: 64 pages, 7 figure
    corecore