17 research outputs found

    Composites for Biomedical Applications

    Get PDF
    In the past few years, significant progress in the study of scaffolds for cells grow has taken place. This research has led to the development of a wide variety of metallic, polymeric, ceramic and composite biomaterials. This thesis describes the development of a novel composite system with tunable morphological and mechanical properties, ease of production and capability to guide the biological response. The composite system was composed by polyamide 6 (PA6) and carboxyl-functionalized multi-walled carbon nanotubes (MWCNT), which were used as reinforcement agents in the polymer matrix. Electrospinning was used as the fabrication technique for the production of anisotropic networks. Physical and biological properties of the nets were evaluated focusing on the effect of the filler addition. It was observed that the production technique induced the alignment of MWCNT within the nanofiber axis and the formation of a roughness on the fiber's surface. The biological properties of MG63 and MRC5 cell lines were enhanced if compared with the neat PA6 networks due to surface modification caused by the filler addition

    Associação entre uso de fórmula láctea no alojamento conjunto e desmame precoce

    No full text
    Resumo não disponíve

    An innovative protocol for schwann cells extracellular matrix proteins extraction

    No full text
    The evidence that extracellular matrix (ECM) components could represent new targets for drugs designed to approach degenerative disease, requires their analysis. Before the analysis, proteins should be extracted from ECM and solubilized. Currently, few protocols for ECM proteins extraction and solubilization are available in literature, and most of them are based mainly on the use of proteolytic enzymes, such as trypsin, which often lead to proteins damage. Moreover, no methods have been so far proposed to solubilize Schwann Cell ECM, which may represent an important target for the therapy of neurodegenerative disorders. In our study, we propose to solubilize SC ECM through the use of surfactants and urea. We compared our method of solubilization, with one of that proposed in literature for a general ECM, mainly based on the use of enzymes. We want to highlight the benefit of solubilizing SC ECM, avoiding the use of proteolytic enzymes. To compare the amount of proteins extracted with both methods, MicroBCA assay was used, while the quality of the proteins extracted was observed through the SDS-PAGE. The results obtained confirm a better solubilization of SC ECM proteins with the proposed protocol, both quantitatively and qualitatively, showing a higher concentration of proteins extracted and a better enrichment of protein fractions, if compared to the enzyme-based protocol. Our results show that SC ECM could be efficiently solubilized through the use of surfactant and urea, avoiding the use of enzyme-base methods
    corecore