347 research outputs found

    Production of Porous Alginate Substrates via Membrane Emulsification for Pharmaceutical Applications

    Get PDF
    The Food and Drug Administration (FDA) released in 2013 a report that established the pharmaceuticals current good manufacturing practices for the 21st century. This report encourages the creation of new technology in the pharmaceutical industry. Therefore, this research aims to develop a reliable method to produce porous polymers particles to be used in a novel continuous crystallization in porous substrate. The aim of the current work is to create porous polymer microspheres with uniform particle size distribution using a commercially available membrane emulsification system. In the present study, the emulsification was made using a dispersed phase composed of miglyol 840 and 2% w/w of span 80, and the aqueous phase composed of 2% w/w of alginate in deionized water and magnesium sulfate (MgSO­­4). Membranes of different pore size (20 μm, 40 μm, and 60 μm) and material (stainless steel and nickel) were tested in order to observe the achievable particle size. A Tagushi design was evaluated considering three levels and four factors (MgSO4 concentration, rotation speed, flow rate, and temperature). The particle size and size distribution was obtained through image analysis of the dried particles. The mean size decreased as the rotation speed and flow rate increases. The temperature did not had a direct impact in the particle size but it reduces the time to generate the particles. No direct impact was observed by changing the MgSO4 concentration

    Mathematical modelling and experimental validation of a novel periodic flow crystallization using MSMPR crystallizers

    Get PDF
    The challenges of insufficient residence time for crystal growing and transfer line blockage in conventional continuous MSMPR operations are still not well addressed. Periodic flow crystallization is a novel method whereby controlled periodic disruptions are applied to the inlet and outlet flows of an MSMPR crystallizer in order to increase its residence time. A dynamic model of residence time distribution in an MSMPR crystallizer was first developed to demonstrate the periodic flow operation. Besides, process models of periodic flow crystallizations were developed with an aim to provide a better understanding and improve the performance of the periodic flow operation, wherein the crystallization mechanisms and kinetics of the glycine-water system were estimated from batch cooling crystallization experiments. Experiments of periodic flow crystallizations were also conducted in single- / three-stage MSMPR crystallizers to validate the process models and demonstrate the advantages of using periodic flow operation in MSMPR stages

    On the reproducibility of in vivo temporal signal-to-noise ratio and its utility as a predictor of subject-level t-values in a functional magnetic resonance imaging study

    Full text link
    The aim of this study was to evaluate the reproducibility of voxel-wise temporal signal-to-noise ratio (tSNR) on repeated scans across runs, sessions, and days. A group of 21 participants was scanned 16 times (4 runs per session, 2 sessions per day, 2 separate days) in a functional magnetic resonance imaging (fMRI) study on a 3T Philips Achieva scanner. For each run, we calculated t-value and tSNR maps. To ascertain that the results were not specific to the scanner, one volunteer was scanned with four fMRI runs in a single session on the above 3T Philips scanner as well as a 3T Siemens Prisma scanner. The coefficient of variation of voxel-wise tSNR across the 16 repeats was up to 25%, while the range relative to the mean of all observations was up to 80%. The voxel-wise variability of tSNR on the two different scanners was similar, indicating a general issue. Despite its use in evaluating the quality of fMRI data, we found only a weak relationship between tSNR and t-values. There is very high variability in voxel-wise tSNR, which should be considered while planning future studies that aim to identify small and focal fMRI effects or the benefits of incremental improvement in methods

    Experimental investigation of the effect of scale-up on mixing efficiency in oscillatory flow baffled reactors (OFBR) using principal component based image analysis as a novel noninvasive residence time distribution measurement approach

    Get PDF
    Oscillatory flow strategies through baffled tubular reactors provide an efficient approach in improving process kinetics through enhanced micromixing and heat transfer. Known to have high surface area to volume ratios, oscillatory flow baffled reactors (OFBR) generate turbulence by superimposing piston driven oscillatory flow onto the net flow generated by a pump. By tuning the oscillating parameters (amplitude and frequency), one can tailor the residence time distribution of the system for a variety of multiphase applications. Using a microscope camera, principal component image analysis, and pulse tracer injections, a novel noncontact approach has been developed to experimentally estimate dispersion coefficients in two geometrically different systems (DN6 and DN15, Alconbury Weston Ltd.). The paper also introduces for the first time a novel scaled-down version of the commercially available DN15 OFBR, the DN6 (about 10 times smaller scale), and provides a comprehensive investigation of the effect of oscillation parameters on the residence time distributions (RTD) in both systems. The oscillation amplitude was found to have a significant positive correlation with the dispersion coefficient with 1 mm providing the least amount of dispersion in either system. Oscillation frequency had a less significant impact on the dispersion coefficient, but optimal operation was found to occur at 1.5 Hz for the DN6 and 1.0 Hz for the DN15. Until now, OFBR literature has not distinguished between piston and pump driven flow. Pump driven flow was found to be ideal for both systems as it minimizes the measured dispersion coefficient. However, piston driven turbulence is essential for avoiding particle settling in multi-phase (solid-liquid) systems and should be considered in applications like crystallization

    Axonal integrity predicts cortical reorganisation following cervical injury

    Get PDF
    Traumatic spinal cord injury (SCI) leads to disruption of axonal architecture and macroscopic tissue loss with impaired information flow between the brain and spinal cord-the presumed basis of ensuing clinical impairment

    Involvement of Mhc Loci in immune responses that are not Ir-gene-controlled

    Get PDF
    Twenty-nine randomly chosen, soluble antigens, many of them highly complex, were used to immunize mice of two strains, C3H and B10.RIII. Lymphnode cells from the immunized mice were restimulated in vitro with the priming antigens and the proliferative response of the cells was determined. Both strains were responders to 28 of 29 antigens. Eight antigens were then used to immunize 11 congenic strains carrying different H-2 haplotypes, and the T-cell proliferative responses of these strains were determined. Again, all the strains responded to seven of the eight antigens. These experiments were then repeated, but this time -antibodies specific for the A (AA) or E (EE) molecules were added to the culture to block the in vitro responsiveness. In all but one of the responses, inhibition with both A-specific and E-specific antibodies was observed. The response to one antigen (Blastoinyces) was exceptional in that some strains were nonresponders to this antigen. Furthermore, the response in the responder strains was blocked with A-specific, but not with E-specific, antibodies. The study demonstrates that responses to antigens not controlled by Irr genes nevertheless require participation of class II Mhc molecules. In contrast to Ir gene-controlled responses involving either the A- or the E-molecule controlling loci (but never both), the responses not Ir-controlled involve participation of both A- and E-controlling loci. The lack of Ir-gene control is probably the result of complexity of the responses to multiple determinants. There is thus no principal difference between responses controlled and those not controlled by Ir genes: both types involve the recognition of the antigen, in the context of Mhc molecules

    Preparation of Microcrystals of Piroxicam Monohydrate by Antisolvent Precipitation via Microfabricated Metallic Membranes with Ordered Pore Arrays

    Get PDF
    Microcrystals of piroxicam (PRX) monohydrate with a narrow size distribution were prepared from acetone/PRX solutions by antisolvent crystallization via metallic membranes with ordered pore arrays. Crystallization was achieved by controlled addition of the feed solution through the membrane pores into a well-stirred antisolvent. A complete transformation of an anhydrous form I into a monohydrate form of PRX was confirmed by Raman spectroscopy and differential scanning calorimetry. The size of the crystals was 7–34 μm and was controlled by the PRX concentration in the feed solution (15–25 g L¯¹), antisolvent/solvent volume ratio (5–30), and type of antisolvent (Milli-Q water or 0.1–0.5 wt % aqueous solutions of hydroxypropyl methyl cellulose (HPMC), poly(vinyl alcohol) or Pluronic P-123). The smallest crystals were obtained by injecting 25 g L¯¹ PRX solution through a stainless-steel membrane with a pore size of 10 μm into a 0.06 wt % HPMC solution stirred at 1500 rpm using an antisolvent/solvent ratio of 20. HPMC provided better steric stabilization of microcrystals against agglomeration than poly(vinyl alcohol) and Pluronic P-123, due to hydrogen bonding interactions with PRX and water. A continuous production of large PRX monohydrate microcrystals with a volume-weighted mean diameter above 75 μm was achieved in a continuous stirred membrane crystallizer. Rapid pouring of Milli-Q water into the feed solution resulted in a mixture of highly polydispersed prism-shaped and needle-shaped crystals

    Phase separated ribosome-nascent chain complexes in genotoxic stress response

    Get PDF
    Assemblysomes are EDTA- and RNase-resistant ribonucleoprotein (RNP) complexes of paused ribosomes with protruding nascent polypeptide chains. They have been described in yeast and human cells for the proteasome subunit Rpt1, and the disordered N-terminal part of the nascent chain was found to be indispensable for the accumulation of the Rpt1-RNP into assemblysomes. Motivated by this, to find other assemblysome-associated RNPs we used bioinformatics to rank subunits of Saccharomyces cerevisiae protein complexes according to their N-terminal disorder propensity. The results revealed that gene products involved in DNA repair are enriched among the top candidates. The Sgs1 DNA helicase was chosen for experimental validation. We found that indeed nascent chains of Sgs1 form EDTA-resistant RNP condensates, assemblysomes by definition. Moreover, upon exposure to UV, SGS1 mRNA shifted from assemblysomes to polysomes, suggesting that external stimuli are regulators of assemblysome dynamics. We extended our studies to human cell lines. The BLM helicase, ortholog of yeast Sgs1, was identified upon sequencing assemblysome-associated RNAs from the MCF7 human breast cancer cell line, and mRNAs encoding DNA repair proteins were overall enriched. Using the radiation-resistant A549 cell line, we observed by transmission electron microscopy that 1,6-hexanediol, an agent known to disrupt phase-separated condensates, depletes ring ribosome structures compatible with assemblysomes from the cytoplasm of cells and makes the cells more sensitive to X-ray treatment. Taken together these findings suggest that assemblysomes may be a component of the DNA damage response from yeast to human

    The Gp1ba-Cre transgenic mouse::A new model to delineate platelet and leukocyte functions

    Get PDF
    Conditional knockout (KO) mouse models are invaluable for elucidating the physiological roles of platelets. The Platelet factor 4-Cre recombinase (Pf4-Cre) transgenic mouse is the current model of choice for generating megakaryocyte/platelet-specific KO mice. Platelets and leukocytes work closely together in a wide range of disease settings, yet the specific contribution of platelets to these processes remains unclear. This is partially a result of the Pf4-Cre transgene being expressed in a variety of leukocyte populations. To overcome this issue, we developed a Gp1ba-Cre transgenic mouse strain in which Cre expression is driven by the endogenous Gp1ba locus. By crossing Gp1ba-Cre and Pf4-Cre mice to the mT/mG dual-fluorescence reporter mouse and performing a head-to-head comparison, we demonstrate more stringent megakaryocyte lineage-specific expression of the Gp1ba-Cre transgene. Broader tissue expression was observed with the Pf4-Cre transgene, leading to recombination in many hematopoietic lineages, including monocytes, macrophages, granulocytes, and dendritic and B and T cells. Direct comparison of phenotypes of Csk, Shp1, or CD148 conditional KO mice generated using either the Gp1ba-Cre or Pf4-Cre strains revealed similar platelet phenotypes. However, additional inflammatory and immunological anomalies were observed in Pf4-Cre-generated KO mice as a result of nonspecific deletion in other hematopoietic lineages. By excluding leukocyte contributions to phenotypes, the Gp1ba-Cre mouse will advance our understanding of the role of platelets in inflammation and other pathophysiological processes in which platelet-leukocyte interactions are involved
    corecore