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Abstract

As mobile technologies become ever more sensor-rich, portable, and
ubiquitous, data captured by smart devices are lending rich insights into
users’ daily lives with unprecedented comprehensiveness, unobtrusiveness,
and ecological validity. A number of human-subject studies have been con-
ducted in the past decade to examine the use of mobile sensing to uncover
individual behavioral patterns and health outcomes. While understanding
health and behavior is the focus for most of these studies, we find that
minimal attention has been placed on measuring personal environments,
especially together with other human-centric data modalities. Moreover,
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the participant cohort size in most existing studies falls well below a few
hundred, leaving questions open about the reliability of findings on the
relations between mobile sensing signals and human outcomes. To address
these limitations, we developed a home environment sensor kit for con-
tinuous indoor air quality tracking and deployed it in conjunction with
established mobile sensing and experience sampling techniques in a cohort
study of up to 1584 student participants per data type for 3 weeks at a
major research university in the United States. In this paper, we begin by
proposing a conceptual framework that systematically organizes human-
centric data modalities by their temporal coverage and spatial freedom.
Then we report our study design and procedure, technologies and methods
deployed, descriptive statistics of the collected data, and results from our
extensive exploratory analyses. Our novel data, conceptual development,
and analytical findings provide important guidance for data collection and
hypothesis generation in future human-centric sensing studies.

1 Introduction

Human health and behavioral research is primarily conducted in laboratories
under conditions that poorly approximate real-world conditions. While this
model has been successful, it may miss key aspects of human behaviors that
are elicited only during more natural conditions or interactions. This concern
has driven interest in developing and using remote sensing technologies to
measure individuals completing their normal day-to-day activities in their natural
environment. An explosion in modern technologies, many of which are in
common usage, now provide the ability to monitor and understand health and
human behavior in ways not previously possible. Smartphones, smart home
devices, wearables, and online digital behaviors provide new ways to track
sleep, emotions, spatial mobility, activity, environmental exposures, and social
interactions to name just a few. These technological advances offer opportunities
to unobtrusively collect real-time data on a wide range of social-behavioral and
health variables with less participant burden and more ecological validity than
ever before [16]

In the past decade we have seen growing effort worldwide in collecting
real-time sensing and experience sampling data from human participants in
natural, uncontrolled settings [1, 34, 30, 22, 27, 7]. Smartphones are the staple
of sensing hardware to measure different aspects of daily behavior [17]. Four
main categories of behavioral patterns can be captured passively: (a) mobility
trajectories, measured by GPS and further processed into location clusters
that represent significant places visited [8]; (b) physical activity, measured by
accelerometer and further processed into activity status labels such as walking
and staying still [35]; (c) social context, reflected in different modes including
phone calls, message exchange, and physical proximity detected by Bluetooth,
which may be used to reconstruct social networks [39], and; (d) interaction with
the device, such as screen unlock status and app usage, which are logged by the
smartphone itself [13]. Additionally, ecological momentary assessment (EMA)
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surveys can be deployed to actively collect participant’s self-reports of mood,
behavior, and well-being in real time.

While many aspects of behavior and health can be captured in smartphone
sensing data including EMAs with satisfactory ecological validity, we realize that
other key dimensions of well-being are better measured using complementary
technologies. A person spends a significant proportion of their time at home
but measurements of their home environment are not generally investigated in
existing studies in parallel with other aspects of daily behavior. To this end, we
developed a home environment sensing device, named BEVO Beacon, that is
capable of continuously collecting and uploading multiple measures of indoor
air quality. This device can provide critical insights into a participant’s living
environment and evaluate its behavioral and health implications. Additionally,
sleep is a critical health outcome and independent variable that is difficult to
measure objectively using unobtrusive instruments. We argue it is especially
beneficial to utilize the sleep measuring capability of wearable devices such as
Fitbit to validate EMA answers.

Furthermore, the vast majority of existing human sensing studies used less
than a few hundred participants [11]. A larger sample is needed to obtain
more reliable assessments of the correlations between key behavior and health
measures, especially when a large number of variables is assessed. Reflecting these
considerations, we conducted a multi-modal human sensing study named UT1000,
for which we recruited more than 1000 college students as participants over
two deployments and distributed a variety of sensors and instruments including
smartphone, Fitbit, BEVO Beacon, and EMA. The resulting data allow us to
pursue research questions that previous data were unable to accommodate.

With numerous types of technologies and methods potentially available to
measure individual humans’ health, behavior, and environment, we begin in
Section 2 by proposing a novel conceptual framework that organizes the various
modalities of human-centric data based on their properties. Then, we present the
study design and the types of data collected in our UT1000 Project in Section
3. We discuss the procedures and results of our extensive exploratory analyses
and visualizations in Section 4, covering data robustness and novel findings
from four types of human-centric data, and caveats from data collection and
analysis in Section 5. Through this study we are able to gain comprehensive
understandings of the lives of college students and learn valuable lessons about
the design, deployment, and data analysis for large-scale human sensing studies.

2 Conceptual Framework

Figure 1 illustrates the conceptual framework we devised for organizing different
technologies and methods for observing human outcomes based on properties of
their data collection procedure and resulting data.

A primary property of human-centric data is its temporal coverage, represented
by the bottom horizontal axis from low (left) to high (right). Temporal coverage
is defined by the inherent suitability of a data modality to monitor extended
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Figure 1: Human-centric Data Modality Framework

proportions of time of an individual’s daily life. Data modalities that can provide
only single-time observations are on the low end of the temporal coverage
dimension. Examples include (1) traditional survey inventories that are designed
to provide a one-time diagnosis of a potential patient and (2) medical procedures
that typically require in-person clinical visits such as electroencephalography
(EEG), electrocardiography (EKG), and buccal swabs. Some data collection
methods or technologies accommodate measurements taken at multiple points
in time, thus are placed mid-range along the temporal coverage dimension.
Examples include (1) self-reports in response to EMAs delivered via mobile
devices and (2) record data such as transaction history which contains user
information logged at different times of user engagement with a service or services.
Highest temporal coverage is achieved by continuous tracking. Various sensors
embedded in devices people carry where they go and install where they stay
belong in this category, such as smartphones, wearable devices, and environmental
sensors used as smart home technology. Wearable devices including smartphones
tend to enjoy an even higher level of temporal coverage than environmental
sensors. This is because wearable devices are able to accompany and monitor
the user at all times as long as the user keeps the devices on their person and
powered on, thus observing the user for longer periods of time compared to
environmental sensors, which can only offer human-centric sensing capability
when the individual in question remains within their proximity (e.g., home
environment sensors are only human-centric when the person is at home).

A second property of human-centric data is its spatial freedom, represented
by the vertical axis ranging from fixed (bottom) to mobile (top). Spatial freedom
is defined by the ability of a data modality to reflect an individual’s health,
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behavior, and environment at a variety of locations. Data modalities with greater
temporal coverage tend to permit a wider range of locations where an individual
can be monitored, a.k.a. higher spatial freedom. For this reason the coordinate
space presented in Figure 1 is a triangle. A discrete-time measurement of low
temporal coverage is typically taken at a specific location, only allowing minimal
spatial freedom, thus occupying the left vertex of the triangle. However, spatial
freedom may vary greatly among instruments that can track users continuously
over time. For example, both a PM2.5 sensor installed at home and a smart
wristband can be considered as having high temporal coverage; however, they
correspond to fixed and mobile, respectively, on the spatial freedom dimension.

The temporal coverage and spatial freedom of a data modality is often
governed by the unobtrusiveness [37] of the technology or method producing
it. Data modalities of higher temporal coverage and spatial freedom are usually
produced by devices and procedures that are more user-friendly, more portable,
and overall less burdensome for the user. Unobtrusive methods allow for more
naturalistic and non-interfering ways to monitor a participant’s daily life, thus
producing measures of greater ecological validity. We identify a major correlation
between ecological validity and temporal coverage/spatial freedom: measures
of high ecological validity tend to enable observations over extended periods of
time and with greater mobility. However, the relation between ecological validity
and temporal coverage/spatial freedom is not a necessary one. In the classic
example of Barker & Wright’s study of Raymond Birch [3], in which a research
team followed a subject around for a whole day making observations every few
minutes, temporal coverage and spatial freedom are both high however ecological
validity is low, because the observation method was extremely intrusive.

The example data modalities shown in Figure 1 are based on how the
generating methods are naturally and realistically carried out. For example,
a buccal swab procedure takes a few minutes to complete but it requires a
high level of participation and effort from the patient; therefore even though
technically buccal swabs can be frequently administered, we still consider it
to be a highly intrusive, one-time measurement. Many human-monitoring
technologies, over their course of development, have seen themselves ascend on
the temporal coverage scale and often on spatial freedom as well. For example,
blood glucose testing used to require clinical visits, thus the burden was high;
however, as the technology for on-body continuous glucose monitoring becomes
perfected, blood glucose measurements can be obtained with unprecedentedly
high unobtrusiveness, allowing its temporal coverage and spatial freedom to
increase as well.

A critical challenge in interdisciplinary research joining social sciences and
engineering is the high-fidelity mapping between human-centric constructs and
technology-advanced methods. Our framework provides an interface between the
constructs and the methods based on their temporal and spatial characteristics
and implications for ecological validity and unobtrusiveness. Thus it can help
social scientists locate fitting methods to measure the constructs of interest.
Furthermore, this framework can be used to guide data collection and hypothesis
generation concerning interrelations of different aspects of human behavior.
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Researchers can delineate a subarea in the triangle to serve as the scope of their
own data collection. Hypotheses or research questions can be straightforwardly
formulated by linking two spots on the triangle and querying the relationship
between the two corresponding data modalities. Moreover, the two-dimensional
space describes one individual and can be conceptually stacked up to represent
a group of individuals and their data and descriptors. Linkage between slices
representing different individuals can inform the generation of research questions
into the relations between individual outcomes and inter-personal interactions.

3 The UT1000 Project

The UT1000 Project is a multi-modal data collection study conducted at the
University of Texas at Austin to measure aspects of the health, behavior, and
home environment of a large-scale participant cohort using a wide variety of
technologies and methods, including traditional surveys, swabbing, EMAs, smart-
phone sensing, wearable trackers, and environmental sensors. We undertook two
deployments, one in the Fall of 2018 the other in the Spring of 2019, totaling
1584 participants (62% female) and lasting three weeks each. Participants for
this study were recruited through an introductory psychology course. Enrolled
students were instructed to sign up for the EMA and smartphone sensing com-
ponents of the study as a class assignment that counted toward their final grade.
Students who did not want to self-track using a smartphone were given the option
to record their behaviors and moods by answering emailed EMA questions or
keeping a daily diary. The other data modalities such as those from the wearable
trackers and environmental sensors, on the other hand, were collected in return
for experimental credits which the students used as partial fulfillment of the
course requirements. The following subsections outline the different components
of the UT1000 Project including the purpose, procedure, and types of data
collected. Discussions of different study components are organized into three
main categories based on the data modalities, namely single-time, multiple-time,
and continuous measures, following an order of temporal coverage from low to
high consistent with the horizontal dimension of Figure 1.

3.1 Single-time measures

3.1.1 Home Environment and Health (HEH) Survey

The Home Environment and Health (HEH) questionnaire consists of 63 questions
asking students to report on home environment factors such as their current
living situation including number of roommates, number and type of pets, and
flooring type; their recent health and medical histories including colds, allergies,
and flu shots received; and other behaviors such as hand washing frequency
and use of electric scooters. A full list of the HEH questions are provided in
Appendix A. The purpose of this survey was to obtain a better understanding
of the participants’ home environment and to clarify discrepancies found in the
other data streams.
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The HEH questionnaire was a voluntary survey sent directly to participants
via the email they provided to register for the study. Completing the HEH survey
was a prerequisite for the subsequent home environment sensing component of
the study discussed in Section 3.3.3. The survey was sent once during the first
two weeks of the study period. Participants were asked to fill out the survey
based on their situation when they received it rather than some time in the past
or the future. A total of 56 participants completed the HEH questionnaire, with
46 in Fall 2018 and 10 in Spring 2019.

3.1.2 Student Environment and Buccal Swabbing

A subset of the study participants were provided with a dust sampling kit
to collect dust samples from various surfaces in their home and classroom
environment. The same participants that completed the HEH survey were given
the kits (N = 56). The kit consisted of six, individually-packaged Phosphate-
Buffered Saline Tween-20 (PBST) wetted FLOQswabs® (manufactured by
COPAN1, Murrieta, CA) and six corresponding plastic, resealable test tubes that
participants would place the swabs in after collecting samples. Participants were
asked for identification in order to gather sampling materials from a refrigerator-
equipped storefront created ad hoc in a convenient place at a central location of
the university. Testing materials to be distributed to different participants were
labeled with distinct barcodes so that we could easily trace the materials back
to the participants and streamline the checkout process.

Participants followed instructions to collect samples from the interior and
exterior of their front door trim, cellphone screen, living room floor, HVAC
filter or air diffuser if applicable, and a desktop where they normally sit when
attending university classes. After sample collection, participants sealed swabs in
the provided test tubes and placed them in their refrigerator until transportation
to the university lab. When participants return the testing materials, material
barcodes were scanned, the identity of the participant cross-referenced to the
materials, and the temperature-sensitive samples were stored until transfer to a
-4◦F freezer daily after storefront closure. They were asked to provide feedback
on the challenges while performing home sampling and also whether they are
willing to submit a buccal swab. If they consented, the research assistant in
charge of operating the storefront would ask the participant to use a swab to
collect a sample from the inside of their cheek. Samples were then stored in a
small, resealable test tube and refrigerated before transfer to a -80◦F daily after
storefront closure.

The dust samples are useful to help understand more deeply about the
participants’ home environment beyond the HEH survey and what they might be
exposed to on campus when attending classes. Examination of the dust samples
can determine what types of microbial exposures commonly occur in students’
indoor environments. Buccal swabs can be used for a variety of reasons, but were
conducted as part of this study to understand how certain chemical markers like

1https://www.copanusa.com/sample-collection-transport-processing/floqswabs/
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cytokine levels are related to mood and stress in participants.

3.2 Multiple-time measures

3.2.1 Ecological Momentary Assessment

Ecological Momentary Assessments (EMAs) involve brief questions about a
participant’s behavior and feelings that are answered in real-time while the
participant is in their natural environment. EMAs were administered using the
Beiwe mobile application2 running on their smartphones at regularly scheduled
times throughout each day. For both the Fall 2018 and the Spring 2019 cohorts,
EMAs were drawn from four categories of questions: sleep questions, momentary
context questions, momentary well-being questions, and an audio question. The
full text of these questions are included in Appendix B. Briefly, the three sleep
questions were designed to assess the duration and quality of sleep, momentary
context questions were designed to determine what the participant was doing and
who they were doing it with, and five well-being questions sampled participants’
mood (sadness, loneliness, contentment, and stress) and energy level on a Likert
scale. The audio question asked the participant to describe what they were doing
and to include a brief segment of background noise.

Both the Fall 2018 and Spring 2019 cohorts received EMAs at five different
times during the day. At 9am each morning they received the three sleep
questions, four momentary context questions that were framed to assess the 15
minutes prior to receiving the EMAs, and five mood questions that were framed
to assess how they feel at the moment. At 12pm, 3pm, and 6pm participants
received EMAs that were similar to those from the morning, except that the sleep
questions were removed and the audio question was added. Each night at 9pm
they received the four momentary context questions and five mood questions
that were framed to assess participant behaviors and feelings across the entire
day.

3.3 Continuous measures

3.3.1 Smartphone

Passive monitoring data were collected using the Beiwe digital phenotyping
platform, which is a freely available open-source system that includes mobile
phone applications for Apple iOS and Google Android operating systems, and
a backend server implemented in Python. The backend server was run using
Amazon Web Services cloud based computing infrastructure. The backend
includes a study administration web application for designing and conducting
Beiwe studies and monitoring their progress, an API for sending study parameters
to and receiving data from the mobile phone applications, a database for storing
study state information, and an encrypted Amazon Simple Storage Service
bucket for storing study data. The Beiwe developers maintain versions of the

2https://www.hsph.harvard.edu/onnela-lab/beiwe-research-platform/
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app in the Apple App store and Google Play store for easy deployment to study
participants.

The full set of passive monitoring parameters are listed in the Appendix C.
Due to differences in operating system security settings and device capabilities,
different data sources were collected on Android and iOS devices. Basic device
and operating system information (make, model, version), accelerometer, GPS,
and power state data were available and collected on both devices. iOS specific
data sources include gyroscope, magnetometer, the proximity of the device to
the user, and whether the phone is connected to the internet by WiFi or cellular.
Android specific data sources include a list of WiFi routers and Bluetooth
devices in the phone’s proximity, the time, duration, and hashed phone numbers
for incoming and outgoing calls, and time, message length, and hashed phone
numbers of incoming and outgoing text messages. To maintain participant
privacy, WiFi and Bluetooth identifiers, and phone numbers are encoded with a
hashing function. The function is unique however, so calls to the same destination
and proximity to the same WiFi access points can be tracked across time.

The Beiwe mobile application was configured to store collected information
locally and to upload it only when connected to the internet using WiFi. If an
error was encountered during transmission, the app stores the data and retries
transmission until receiving an indication that the data was successfully received
by the backend. Each data source is stored in its own set of CSV files that are
broken down and organized by timestamp. These files are encrypted on the
phone before being transmitted over an SSL connection to the backend. When
received, the data are unencrypted, processed to correct for errors, and update
received data statistics, and then re-encrypted for storage. All encryption is
performed using randomly generated participant specific encryption keys.

As per the study design, participants were instructed to download and
allow all permissions for the Beiwe platform. Each participant had a randomly
generated identification tag that consisted of eight letters and numbers and were
prompted to create their own password after entering a temporary password
given to them by the study coordinator. Participants did not have direct access
to their data and used the login credentials when completing the EMA surveys.

3.3.2 Wearable Activity Tracker

Participants’ activity and sleep patterns were captured using the Fitbit Charge2TM

wearable activity trackers. The devices require participants to input their height,
weight, gender, and age to accurately calculate the number of steps taken, calories
burned, and the wearer’s heart rate. In addition, participants can track different
exercises by selecting them from the device’s interface or through the paired
smartphone application. Most Fitbit products, including those supplied to the
study participants, are capable of passively monitoring the wearer’s sleep as long
as the device detects that the user has been asleep for a minimum number of
hours. The wearer’s sleep is subdivided into four categories based on movement
and heart rate: awake, light, deep, and rapid-eye-movement (REM). Over the
past few years, many studies have looked at the accuracy and utility of using
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Figure 2: Building EnVironment and Occupancy (BEVO) Beacon

Fitbit and other personal monitoring devices in sleep studies [24, 12, 4, 23]. Re-
sults from these studies show that these devices can be useful when determining
total sleep time, awake time, and the amount of time spent in REM sleep.

Similar to the swabs discussed in Section 3.1.2, each Fitbit was numbered,
barcoded, and provided to participants also at the storefront location if they
consented to participate in the activity monitoring component of the study. In
addition to receiving the device, each participant was required to register a Fitbit
account and download the smartphone application if they did not already hold
an account. Participants were asked to wear the activity monitors as much as
possible, removing them only when bathing, participating in aquatic activities,
or charging the device. Participants were instructed to wear the Fitbit monitor
over a period of at least two weeks and were free to use the device outside of the
study requirements. If broken or damaged, participants were given a new device
to register and use for the remaining portion of the study.

3.3.3 Building Environment and Occupancy Beacon

The Building EnVironment and Occupancy (BEVO) beacon is a low-cost sensor
platform we developed in-house that is capable of measuring multiple indoor
environmental quality (IEQ) variables in addition to detecting Bluetooth and
WiFi signals. The BEVO Beacon consists of a Raspberry Pi (RPi) micro-
computer connected to a variety of environmental sensors arranged into a
6”×6”×4” housing made of plywood and acrylic (see Figure 2). The RPi can
detect Bluetooth devices and WiFi access points in its proximity, which can
help determine occupancy. The RPi is additionally capable of storing data
captured by itself and the co-locating IEQ sensors on a local micro SD card,
and then uploading the data to a cloud-based storage system hosted by the
Texas Advanced Computing Center once connected to WiFi. Table 1 outlines
the environmental sensors used in BEVO Beacon and the variables they measure.
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Variable Unit Sensor Notes

Temperature (T) ◦F Adafruit
SHT31-D

Occupant thermal comfort

Relative humidity
(RH)

% Adafruit
SHT31-D

Occupant thermal comfort

Particulate matter
(PM)

µg/m3 Plantower
PMS5003

EPA-specified criteria air pol-
lutant with respiratory health
implications

Total volatile or-
ganic compounds
(TVOCs)

ppb (parts
per billion)

Adafruit
SGP30

Compounds with a wide-range
of health implications from res-
piratory issues to cancer

Table 1: IEQ variables measured by the environmental sensors housed in the
BEVO Beacon

The RPi is housed in a lower compartment, separated from the sensors and
wired to a small fan to help with heat regulation. To avoid the possibility of
re-sampling air trapped inside the device’s housing, and further help with heat
management, the environmental sensors are housed in a compartment above the
RPi with their inlets/exhausts exposed to the ambient air. The BEVO Beacon
requires a 5B micro-USB portal connection to power.

The commercially available sensors used on the BEVO Beacon afforded us two
benefits. These sensors were low-cost (<US$100), which allowed us to develop
and deploy more devices than what is typically done when measuring indoor
air quality. The second benefit is that these sensors serve as the base units in
many other commercially available IEQ products. Using the base units rather
than off-the-shelf devices ensures that there is no proprietary algorithm that
alters the raw values measured by the sensors. However, reliability and accuracy
are two main issues surrounding the use of low-cost sensors since they use less
sophisticated electronics than high-grade reference monitors that can cost more
than US$10000. Our beacon development effort is a step toward integrating
low-cost sensors to achieve high home-sensing performance.

BEVO Beacons were each assigned a number and a barcode. Only the
participants who completed the HEH survey (see Section 3.1.1) were eligible
to receive a BEVO Beacon. Participants who were eligible and consented to
participation were instructed to stop by the storefront and check out the device.
At check-out, the device was supplied to the participant along with a 5V micro-
USB to wall outlet adapter. Participants were instructed to power the device
using any open outlet in their home. In total, we distributed 15 BEVO Beacons:
five in Fall 2018 and ten in Spring 2019.
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4 Exploratory Results

4.1 Data collected

To showcase the diverse data streams collected from our participants, we plot in
Figure 3 data collected from a particular participant’s smartphone, Fitbit, and
BEVO Beacon on a given day (March 30th, 2019) as an example. The top third
of Figure 3 shows the data types collected by the Beiwe smartphone platform.
We conducted temporal clustering [19] with the raw GPS traces and processed
them into periods of stay at significant places (represented by the colored vertical
bands) and periods of movement between significant places (represented by the
white spaces between the colored bands). We used Open Street Map API to
query for the place type of the significant places found. We show the geographic
location and venue type of the significant places, as well as the trajectory and
time of the third transition period of the day (“Move3”) in the two maps on top.
In total on March 30th, 2019, the participant made 6 stays at 3 distinct places
(residence hall, art museum, and entertainment venue) and made 5 trajectories
of movement between them. The participant spent her entire night and most of
the morning (midnight to around 11am) at the residence hall (red band/dot),
which was her main residence. Notice that even though the trajectory of Move3

(top right map) passes through the residence hall but did not register another
period of stay, suggesting that the participant merely swung by the residence
hall without making a stop for an extended period of time.

During the three-week official study period, we were able to record some GPS
and accelerometer data from approximately 950 participants each day. Within
these days, data completeness for GPS and accelerometer followed a highly
regular and well-synced daily cycle where the least percentage of participants
submitted data in the early morning hours and the highest during the evening
hours. Averaging the hourly completeness percentages gives us a daily average
of around 65% of the participants submitting data during any given hour. In
addition to mobility information, smartphone acceleration magnitude is plotted
as black dots and episodes of unlocked screen as short grey bands. We observe
that periods of high acceleration magnitude correspond well with periods of
movement between places. Screen activity, on the other hand, varies heavily
depending on the place: for example, the screen stayed unlocked during the entire
Stay3 at the entertainment venue, but locked during Stay4 at the art museum.
Moreover, the participant responded to an EMA survey at 9am, providing a
self-report of her sleep quality, hours of sleep, as well as the semantics of her
location at the moment. The participant did not respond to any EMA questions
scheduled at other times of the day. Her answer “dorm; campus” to the location
question matches with the significant place detected by GPS.

The middle third of Figure 3 shows three data streams recorded by Fitbit:
heart rate (BPM), calories expense (Calories), and steps taken (StepTotal).
The patterns of fluctuation of the three data streams are largely in sync with
one another, with values significantly higher during the day than during the
night. Three points of peak values in heart rate and calories (11am, 4pm, 9pm)

12



Figure 3: Data collected from the smartphone, Fitbit, and BEVO Beacon
of an example participant during a given day (March 30th 2019). Plotted
data modalities are: EMA (questions and answers shown against phone image
background on top), GPS (clustered significant places and an example movement
trajectory shown in maps on top and as vertical bands), accelerometry (black
dots), screen activity (short grey bands), heart rate (BPM), calories spent in
the past hour (Calories), steps taken in the past hour (StepTotal), home relative
humidity (RH), home temperature in degrees Fahrenheit (TF), home particulate
matter in µg/m3 (PM), and home TVOC (TVOC).
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Figure 4: Completeness of four types of data collected from participants in the
Fall and Spring deployments combined: (A) daily EMA (1482 participants); (B)
Smartphone sensing, GPS data shown as example (1539 participants); (C) Fitbit
(36 participants), and; (D) BEVO Beacon (9 participants).
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visibly correspond to time intervals of high smartphone accelerometer readings,
suggesting a positive correlation between smartphone accelerometry and physical
activity status recorded by wearable devices. The bottom third of Figure 3
shows four data streams recorded by BEVO Beacon, all of which are metrics of
indoor air quality. Note that only when the participant is located at her home
location (indicated by red band in this plot, specifically Stay1,2,5) is she exposed
an environment described by these metrics; when she goes away, the metrics
merely reflect her home environment status that does not affect her directly. We
observe a sharp rise in humidity and PM concentration between 4-5am, which is
potentially indicative of a change in the HVAC system.

4.2 Data completeness

Completeness encompasses two metrics: first, the amount of time each participant
stays in the study and continues to submit data, actively and passively; second,
when the data type is continuous, the proportion of time during the entire period
of participation that data are available. The first metric is important because
it represents participant compliance and a higher value in it (or, closer to the
length of the intended study period) indicates more successful participation.
The latter measure is also important in that it represents data continuity and a
higher value in it indicates fewer data-missing intervals during the total period
of time a participant is submitting data.

In Figure 4 we present the completeness of four major types of data we
collected, namely EMA, smartphone, Fitbit, and BEVO Beacon. In Figure 4-
(A), we show the number of participants (height of bars) who submitted answers
to daily EMAs for all different numbers of days (horizontal position of bars), as
well as the percentage of participants (projection of red dots on vertical axis on
right) who submitted answers to daily EMAs at least a certain number of days
(horizontal position of red dots). We observe that more than 60% of participants
submitted daily EMA answers for more than 14 days and more than 20% more
than 21 days.

In Figure 4-(B), we show the distribution of participants with respect to
the total duration of time they were contributing smartphone GPS data (i.e.,
compliance, on the horizontal axis) and the proportion of that duration for
which their data are available (i.e., continuity, on the vertical axis). We use the
color of square cells to indicate the number of participants that fall in particular
compliance-continuity boundaries: the brighter-colored vertical bar between
20-25 days correspond well with our planned study length which is three weeks.
Shown by the blue horizontal lines, 283 participants (18.4%) had smartphone
GPS data available for more than 80% of the hours they participated in study,
53.7% of participants more than 60%, and 84.7% of participants more than 40%.

Figure 4-(C) contains the same information as (B) but plotted for Fitbit
data. As opposed to aggregating the number of participants like we did for (B),
because of the lower number of participants who chose to wear a Fitbit (36),
we simply represented each Fitbit participant as an opaque grey dot, forming
a darker cluster when more participants fall in a close region of compliance-
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continuity value combination. Compared to smartphone data, Fitbit data enjoyed
significantly higher continuity: out of the 36 participants, 30 submitted data
for more than 80% of their in-study time. This may suggest that Fitbit as
a wearable device requires less human attention and interference, as opposed
to smartphones which are constantly being handled and require more frequent
charging, and thus are more prone to produce uninterrupted data streams.

Out of the 15 BEVO Beacons we distributed, we found that only nine
recorded and uploaded data reliably and they were all from the Spring 2019
deployment. Due to such a small number of participants who returned substantial
environmental sensing data, in Figure 4-(D) we simply plotted entire time series
of data availability of each IEQ measure captured by BEVO Beacons (indicated
by different colored dots, jittered) for each of the nine participants. Visibly, three
of the nine BEVO Beacons submitted data perfectly whereas the remaining six
primarily had trouble submitting PM data (red strip on the bottom). Upon
inspection we found that communication errors between the sensors and the
RPi accounted for a large amount of data loss. Fluctuations in power delivery
between the RPi and the environmental sensors caused some environmental
sensors to go offline for periods and resulted in data loss during the study.

One highly notable difference is in the number of participants who signed up
for smartphone sensing compared to wearable and home environment sensing
(>1000 vs. <100). We believe that both hardware availability and the incentive
structure contributed to this discrepancy. First, the smartphone component
of the study required the participants’ own primary phone, which was widely
available; whereas the Fitbit and BEVO Beacon components required extra
hardware we needed to purchase, build, and provide for the participants, thus
limiting the number of participants we could enroll. Second, the incentive for
students to complete smartphone sensing and EMAs was to receive credits on an
assignment that counted toward their final grade (with the alternative to opt out
of using smartphone and only logging manually instead), which proved to be an
effective strategy to improve participant compliance [18]; whereas participation
in the other parts of the study was rewarded by extra experimental credits,
which may not have been nearly as attractive to the students.

4.3 EMA findings

With our EMA data we explore how participants’ self-reported momentary mood
ratings vary under different temporal, spatial, social, and behavioral contexts.
Each context is specified by a categorical variable with multiple levels. For
temporal context, we focused on the day of week and thus have 7 levels. For
spatial context, we organized the answers to the place type EMA question
into 8 categories: campus/library, home (including dorm), work (the site of a
job), worship (e.g., church), social (Greek house, friends’ house, or party place),
cafe/food, gym, shopping (store or mall). For social context, we organized the
answers to the “who are you with” EMA question into 8 categories: alone,
strangers, classmates, family, co-workers, roommates, friends, significant other.
For behavioral context, we organized the Activity of Daily Living question into
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Figure 5: Self-reported momentary mood ratings from Ecological Momentary
Assessments. The type of venue, type of companionship, and the Activity of
Daily Living were self-reported together with the mood surveys. Each dot
represents the average value of a participant under a corresponding category.
The black vertical bars indicate the mean of the participant-wise (i.e., calculated
within each participant) average scores and the surrounding grey bands indicate
a bootstrapped 95% confidence interval of the mean. In panels (B)(C)(D),
categories are arranged from bottom up in a least-to-most-desirable order based
on the corresponding mood outcome.
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10 categories: class/meeting, study/reading, rest/do nothing, transit, work a job,
socialize (including talk, text, and using social media), chore/errand, eat/drink,
(watching) tv/movies, and exercise. For each of the four mood outcomes (sadness,
stress, loneliness, contentment), the self-ratings were evaluated on a 0-3 ordinal
scale, with 0-3 corresponding to a mood outcome being not at all, a little bit, quite
a bit, and very much so respectively. We computed a participant-wise average
for each participant when they are under each of the contextual categories listed
above. We bootstrapped the mean of the participant-wise averages for each
contextual category with 2000 with-replacement samples to determine a 95%
confidence interval. We show some of the results in Figure 5.

Figure 5-(A) shows participants’ stress level on different days of week. A
participant tends to experience significantly lower stress on Fridays and Saturdays
than the rest of the week while Monday to Wednesday are the most stressful days.
Figure 5-(B) shows participants’ sadness level felt at different kinds of places. A
participant tends to feel the least sad at a store or mall and saddest at home or
on campus. Figure 5-(C) shows participants’ loneliness while accompanied by
different types of individuals. A participant tends to feel the most lonely being
alone and least lonely being with a significant other; and there appears to be a
decrease in loneliness with the type of companionship becoming more intimate.
Figure 5-(D) shows participants’ contentment experienced while engaging in
different types of daily activities. School related activities such as attending
classes and studying see the lowest contentment whereas exercise is associated
with the highest contentment, with watching tv/movies and dining being not-
surprising runner-ups. These results portray the general patterns of a college
student’s psychological experience in her daily life.

In addition to the effect of daily life context on mood outcomes, we further
explore the interdependency between these outcomes together with other health
outcomes reported by the participants, that is how these outcomes are robustly
related with one another. We focus on 7 daily measures, namely sadness, stress,
loneliness, contentment, energy level, restfulness of sleep, and hours of sleep.
The values of these outcomes are obtained from the daily EMA questions:
end-of-day self-assessment of mood and energy level experienced during the
day, and beginning-of-day self-assessment of the quality and duration of the
previous night’s sleep. We start by taking the average of each participant’s 7
daily measures (so that each data point represents a distinct participant and is
independent) and then fit a LASSO regression model for each of the 7 measures
using the other 6 measures as predictors, with the regularization parameter
λ optimized by 10-fold cross validation (so that unimportant and fortuitous
correlations get reduced to zero). Through this operation (essentially a double
round robin), the relation between each pair of outcomes receives a coefficient
in two models. We take the average of the two coefficients and use that value
as the dependency value between the corresponding pair of outcomes. Figure 6
shows these dependency values by the edges between nodes that represent the
daily outcomes: the dependency values’ sign corresponding to the color (green
being positive) and magnitude proportional to the thickness. We also computed
the percentage of variance in each outcome explained by the other outcomes via
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Figure 6: Interdependency between a participant’s self-reported average daily
mood ratings (sadness, stress, loneliness, contentment), energy level (energy),
sleep quality (restful), and sleep duration (hrs.sleep). For each variable (node),
a LASSO regression model is fitted with other variables as predictors and
the regularization parameter λ optimized by 10-fold cross validation. The
completeness of the ring around each node indicates the proportion of its variance
explained. The color and the weight of the edges are determined by the sign
(green-positive; red-negative) and the value of the coefficients from the LASSO
models fitted.
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the fitted models and indicate as the completeness of the ring surrounding each
node in Figure 6.

The most prominent dependency we observe is between sadness and loneliness,
with sadness robustly correlated with only loneliness, stress, and contentment in
the expected directions, but neither with energy level nor with sleep quality and
duration. 70.4% of variance over participants’ average daily sadness levels can be
explained by their other three mood outcomes and that is the highest percentage
of all 7 outcomes investigated. We observe a strong correlation between perceived
sleep quality (restful) and perceived sleep duration (hrs.sleep), but also a clear
difference between how the two sleep metrics are correlated with other measures.
Perceived sleep quality of the previous night is robustly correlated with the
contentment and energy level of the current day whereas sleep duration does
not display such effect. Of the four mood outcomes, contentment appears to
the only one that has a strong correlation with both energy level and the sleep
quality of the previous night.

4.4 Smartphone findings

Smartphone sensing data has been extensively studied for its utility in diagnosing
and predicting mental and physical health symptoms. Existing research has
identified a number of digital phenotypes [28] extracted from GPS, accelerometer,
phone usage, and phone call/SMS log data that are significantly correlated
with aggravated mood. Most of these studies used smartphone data collected
from less than 200 participants and we wonder whether some of the important
correlations can be replicated in our data with ∼1500 participants. We focus
on accelerometer, GPS, and screen usage since these three types of smartphone
data are available for both iPhone and Android using participants, the latter
constituting 1/8 of the entire cohort. We selected from our participants those
who completed at least 7 days of daily sadness level self-reports and computed
the average daily value of the following four features: acc.mag.rmssd, loc.var.log,
ent.pls, and unlocked.dur. acc.mag.rmssd refers to the root mean square of
successive differences of acceleration magnitude (unit: gravity) and quantifies the
suddenness of the smartphone’s movement with a higher value indicating more
transition between staying relatively still to moving intensely. loc.var.log, log-
transformed location variance, is computed by summing the variance in longitude
and latitude values of a participant’s GPS coordinates and then taking the natural
logarithm. Participants who visit many different places that are far apart register
a higher value in location variance. ent.pls is defined by the normalized entropy
of the amounts of time spent at difference places. To compute this feature, we
first undertake a temporal clustering procedure mentioned in Section 4.1 to
obtain a list of key places, then find the duration of time spent at each of the key
places, and finally calculate the normalized entropy over these duration values.
Lastly, unlocked.dur, a.k.a. duration of screen unlocked, is simply the amount of
time (minutes) a participant’s smartphone screen stays unlocked. In addition
to these 4 smartphone phenotypes, we computed mean.sadness and sd.sadness,
the mean value and standard deviation of daily sadness scores representing the

20



Figure 7: Scatter plot matrix of four mobile sensing phenotypes and two mood
symptom metrics. Density plots of each variable are shown on the diagonal.
Pairwise correlation values together with their significance level are shown in
the cells above the diagonal (p-value: ***< 0.001; **< 0.01; *< 0.05*; .< 0.1)
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severity and the fluctuation intensity of sadness respectively, to serve as the
health outcomes of interest.

Figure 7 shows pairwise scatter plots and correlations among the four smart-
phone sensing features and two mood symptom metrics. mean.sadness and
sd.sadness are highly correlated, suggesting that participants who reported
greater sadness during the study period also reported greater variation of sadness
levels. Apart from the correlation with each other, both mean.sadness and
sd.sadness appear significantly and negatively correlated with acc.mag.rmssd,
indicating a positive connection between active motion and improved mood.
However, they do not display a significant correlation with other sensing features,
with the exception of loc.var.log which shows a significant positive correlation
with sd.sadness but none with mean.sadness. The three variables, acc.mag.rmssd,
unlocked.dur, and ent.pls, are all highly correlated with one another. This sug-
gests that the participants whose smartphones have more highly fluctuating
movement tend to divide their time more evenly at different places and spend
more time with their smartphone unlocked. loc.var.log is also significantly corre-
lated with ent.pls and unlocked.dur, but not with acc.mag.rmssd. This indicates
that it is visiting and spending time at multiple places during a day, rather than
merely covering more expansive geographic area which may not entail stopping,
that is associated with active motion.

4.5 Fitbit findings

A notable functionality of Fitbit is to infer and categorize the wearer’s bedtime
into sleep stages: awake, non-REM sleep (including “light” and “deep” sleep),
and REM sleep. Researchers have sought to validate Fitbit’s ability to accurately
measure sleep stages by concurrently monitoring Fitbit wearers’ sleep using
polysomnographic devices and found satisfactory accuracy of differentiating
asleep and awake as well as delineating REM stage sleep [12, 24]. Many others
used Fitbit sleep stage data to study the relations between sleep patterns and
other health and performance outcomes such as asthma [5], cognitive ability [32],
and sleep disorders [29]. However, less is known about how the amount of REM
and non-REM sleep is associated with an individual’s perceived sleep quality.
To help answer this question, we correlate three Fitbit-measured nighttime sleep
duration metrics (REM time, non-REM time, and total asleep time that is REM
+ non-REM) with participants’ answer to a question about self-perceived quality
of the previous night’s sleep (“How restful was your last night’s sleep?”). This
question was part of the EMA survey sent to participants at 9am each day
(see Section 3.2.1). Cross-referencing our Fitbit and EMA data indicates that
seven participants totaling 41 nights had both reliable bedtime Fitbit data and
self-reported restfulness score the next morning available. These observations
are retained for the correlation analysis.

For each participant-night, the duration of Fitbit-measured REM, non-REM,
and total sleep time (in minutes) were paired with the perceived restfulness
self-rating the next morning (on a 0-3 ordinal scale) and plotted in three scatter
plots shown in Figure 8. The REM time plot and the total sleep time plot
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Figure 8: Relationship between participants’ self-reported sleep restfulness in
the morning and Fitbit-measured duration of REM, non-REM, and total sleep
received the previous night. Each dot represents one night and is colored to
indicate distinct participants. Colored-lines and black line represent individual
and overall linear trends respectively.

Table 2: Coefficients and significance (p-value) of the correlations between self-
reported sleep quality (restfulness) and Fitbit-measured sleep metrics based on
mixed-effect ordinal regression.

Fitbit-measured duration (hours) coefficient (β) p-value

REM 1.312 0.04
Non-REM 1.136 0.003
Asleep (REM + non-REM) 0.535 0.012
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Figure 9: Differences in Fitbit-measured sleep metrics on days when participants
rated aspects of their mood and energy as low (6 1, no more than “a little
bit”) or high (> 2, at least “quite a bit”) and walked more or less than 10,000
steps. Colors in the swarm plots correspond to data from individual participants.
P-values from a mixed effect models accounting for the individual random effect
are included in addition to the direction of the correlation. Bold values indicate
p-values less than 0.05.

are arranged abreast one another because total sleep time is always greater
than REM-time and the two measures occupy two disjoint spaces on the time
axis. Each dot represents one night and is color-coded to represent distinct
participants. Colored linear lines are fitted specific to each participant while the
thick black line represents the linear trend over all observations. Visibly there is
a strong positive correlation between all three Fitbit-measured sleep duration
metrics and perceived restfulness, both individually and overall. Exceptions exist
in REM time plot where we observe two participants who had a non-positive
correlation between REM time and perceived restfulness. To be rigorous, we
further conducted ordinal regression modeling and present our results in Table
2. Since the restfulness score is an ordinal variable and multiple observations
belong to the same participants, we used mixed-effect ordered logit models
to model perceived restfulness rating with each of the three Fitbit-measured
sleep duration metrics, with the participant-wise random effect accounted for:
logit[P (restful 6 i)] = αi − (β × FitbitSleepMetric + u + ε), i ∈ {0, 1, 2}.
Likelihood ratio tests indicated that this is superior to a fixed effect model with
the corresponding Fitbit metric being the only predictor. Based on results shown
in Table 2, duration of non-REM sleep appears the most significantly correlated
with self-reported restfulness.

Another group of studies have focused on the relationship between sleep
quality and mental health, and found that negative mood such as anxiety, sadness,
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stress, and loneliness are all associated with poorer sleep quality [31, 2, 40].
These studies typically (1) investigated between-subjects variances treating an
individual participant as the unit of analysis and (2) used either questionnaires
(e.g., Pittsburgh Sleep Quality Index) or in-lab sensors (e.g., polysomnography,
actigraphy) to assess sleep quality. We, on the other hand, wanted to explore how
an individual’s mood, energy, and physical activity levels assessed on a daily basis
may influence her sleep quality on the immediately following night as measured
by the more convenient and less intrusive Fitbit. Specifically, we calculated three
sleep metrics based on Fitbit sleep stage data: (1) time asleep, which is the sum
of both REM and non-REM time; (2) sleep efficiency, defined as the ratio of
time asleep to time in bed, and (3) the REM-to-non-REM ratio. For daily mood
and energy ratings, we used participants’ end-of-each-day EMA self-reports of
contentment, sadness, loneliness, stress, and energy levels, evaluated on a 0-3
ordinal scale (with the exception of energy level which was evaluated on a 0-4
ordinal scale); for each of the mood and energy questions, we labeled a day as
“low” if the participant’s self-rating was below or equal to 1 (i.e., no more than
“a little bit”) and “high” if greater than or equal to 2 (i.e., at least “quite a bit”).
For physical activity level, we used the daily step count also captured by Fitbit,
and labeled a day as “low” if the participant registered less than or equal to
10000 steps and “high” otherwise, which is consistent with a guideline widely
used in health research [36]. We then compared each of the three nightly Fitbit
sleep metrics with each of the binary mood, energy, and activity levels of the day
preceding sleep. Requirements for data availability for Fitbit sleep stage data,
daily EMA data, and Fitbit step count data narrowed our sample size down to
41 observations (days) from 7 participants for the sleep-EMA pairing and 252
observations from 34 participants for the sleep-steps pairing.

The distributions of the three Fitbit sleep metrics given high or low mood,
energy, and step counts are shown in Figure 9. Mood/energy and sleep metric
relationships are shown as swarm plots with data points colored by participant.
Step count and how it relates to sleep metrics are shown in the final column of
Figure 9 as a pair plot. In addition to plotting, we built mixed effect models
of each sleep metric using each of the mood, energy, and step count binary
levels with the individual participant’s random effect accounted for and show
the sign and p-value of the coefficient in each corresponding cell in Figure 9.
Class imbalance between high and low sadness and loneliness is visibly severe
(panels B, C, H, I, N, O), undermining the reliability of the corresponding results,
therefore we limit our interpretation to the remaining four explanatory variables
(contentment, stress, energy, and step count). Contentment and stress share a
similar pattern in terms of correlation with the Fitbit sleep metrics: they are
both significantly correlated with time asleep (panels A and D, albeit in opposite
directions) but not with sleep efficiency or REM-to-non-REM ratio (panels G,
M, J, P). A day reported by a participant as higher in contentment and lower
in stress tends to end with significantly greater amount of time asleep at night,
which is consistent with existing research on negative mood and sleep duration
[21, 33, 41]. The only variable that has a significant correlation with both sleep
efficiency and REM-to-non-REM is energy level during the day (panels K and
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Q). Days on which participants reported feeling more energetic tend to have
worse sleep efficiency (e.g., longer time tossing and turning before falling asleep)
but a higher REM-to-non-REM ratio. The final column of plots show that on
days when participants took more than 10000 steps, their sleep time was shorter
and had a lower REM-to-non-REM ratio, which seems to contradict the finding
in most studies that increased exercise is correlated with improvements in sleep
duration and quality [14, 20]. This result suggests that steps taken on a day
may not be an effective indicator of the amount of physical exercise, at least
among college students.

4.6 Home environment findings

We begin by plotting data from two example participants’ BEVO Beacons (IDs
vvlm8iyi, 19k2rlua in Figure 4) in Figure 10 to show the hourly variation of
indoor air quality throughout the study period. We chose these participants
because their devices collected the most complete sets of environmental data and
their responses on the Home Environment and Health survey revealed no major
differences in their living situations: each participant had one roommate, did
not smoke, did not have any carpeting, did not own pets, and did not regularly
change their AC air filter. Figure 10 shows the variation of PM2.5 and TVOC
concentrations over different days and different hours of the day for the three
participants. The colors in Figure 10 correspond to air quality index (AQI)
values for PM2.5 [26] and approximated AQI values for TVOC. For PM2.5, AQI
is a scale from 0 to 500 that indicates the severity of pollutant concentration.
An AQI of 100 is consistent with recommendations from the US Environmental
Protection Agency’s (EPA) National Ambient Air Quality Standards (NAAQS)
therefore values for AQI below 100 are generally considered healthy while values
above can be a concern depending on the concentration and duration of the
exposure.

All three participants experienced consistently high concentration of PM2.5
on days such as the fifth and tenth days of the study compared to other days.
The participant in column (A) saw decreases in PM2.5 concentration every day
starting after 12:00 with the exception of days 5 and 7. One plausible explanation
is that the participant’s AC turns on at this time and remains operating during
the hottest part of the day. Weather data indicate that temperatures on day
5 were lower, on average, than most other days during the study period which
could have made running the AC unnecessary. Between days 10 and 18, this
participant’s BEVO Beacon captures 1-3 hour events where concentrations were
uncharacteristically high. These typically occur in the early-to-late morning
which may indicate the participant was cooking breakfast and the effects of these
events lingered for a few hours after. There are no noticeable trends for the
participant in column (B), however their PM2.5 concentrations decrease starting
at 12:00 on day 15 and remain suppressed for the remainder of the study.

One shared pattern between PM2.5 and TVOC measurements is an initial
period of low value readings. Lower PM2.5 concentrations were grouped toward
the beginning of the study period and not measured again for the remainder of
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Figure 10: Hourly and daily variations of PM2.5 and TVOC concentration from
three BEVO Beacons throughout the data collection period. The color of a cell
indicates the environmental hazard associated with a certain level of PM2.5 and
TVOC.

the study. TVOC concentrations are also similarly low during the first few days
of the study. This pattern could be explained by either or both of the following.
First, sensors may have required significant time to warm-up; for example, metal
oxide sensors used to measure TVOCs, like the SGP30 sensor on the BEVO
Beacon, typically have a burn-in time meaning that when the sensors are initially
powered on, measurements are uncharacteristically low. Second, sensors may
have experienced a certain degree of drift or fouling that artificially increased
the measured concentration during later portions of the study: sensor drift refers
to the gradual increase or decrease in measured values over a long period of time
due to degradation of electrical and mechanical components, while fouling occurs
when sensors are exposed to dramatically high concentrations or in operation for
long periods of time which allows dust and other materials to build up around
the sensors inlet. The TVOC plots in columns (B) suggest that the sensor might
have become over-saturated because the concentrations get progressively higher
throughout the study period. These concentrations, like PM2.5 of (B), are also
dramatically higher than the values measured for the participant in column (A)
who experienced worse concentrations during the middle of the study period and
a decrease during the final few days.

Figure 11 shows the distinctive distribution densities of PM2.5 and TVOC
concentration values in the living environment of the vaping participant compared
to the concentrations measured in nine other non-vaping participants, suggesting
that our BEVO Beacon can potentially be used to detect living habits and
inform behavioral health interventions. Recent studies have indeed measured
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Figure 11: Comparison of distributions of PM2.5 and TVOC measurements in
homes between participants who do not vape and those who do (one participant,
indicated by red curve).

increased concentrations of PM2.5 and TVOCs in rooms after vaping [15, 9].
Only one participant out of the ten who received a BEVO Beacon during the
Spring 2019 deployment also reported that they vaped. This vaping participant
had an elevated density of PM2.5 concentrations around 75 µg/m3 but did not
record values as high as other participants. Compared to other participants, the
vaper also recorded higher TVOC concentration on average and especially an
increased proportion of TVOC concentration between 300-500 ppb. Our results,
while limited to one individual, are consistent with previous study findings that
vaping increases the amount of PM and TVOCs in one’s indoor environment.

5 Discussion

We have focused on four types of human-centric data and their inter-connections
in our analysis, namely EMA self-reports, smartphone sensing, wearable sens-
ing (Fitbit), and home environment sensing (BEVO Beacon). The four data
modalities serve as an illustrative subset of the space outlined by our conceptual
framework (Figure 1) and are not meant to be exhaustive. For example, we
collected single-time, highly participatory measures such as buccal swabs but
chose not to include them in our data experiments due to the limited available
sample size. Future work could very well place heavier emphasis on obtaining
these data types that are usually more logistically challenging to collect and
explore how key well-being outcomes revealed in those data types can be inferred
by more passive data streams. Another type of data that we did not collect in
the UT1000 Project is individual social media data including both the content
created and the interaction patterns, which have been utilized to predict personal
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mental health outcomes in past studies [25]. In our conceptual framework of
human-centric data modality, social media data would fit in the medium range
on both the temporal coverage and the spatial freedom axes, similar to the
position of EMAs.

A recurring theme in the data analysis using multi-modal human-centric
data, as we encountered throughout Section 4, is multiple measurements from
the same participant. Typically, when researchers collect sensing or survey data
from participants, multiple data points for each data type are collected from
each participant, resulting in a situation where one has N observations from
M participants and N > M . This is not a trivial issue because observations
that belong to one participant tend to be more correlated with each other
than with those from other participants, which makes the direct application of
regression models onto the entirety of the N observations statistically unsound
[6]. We identify the following strategies for dealing with this technical challenge.
First, if the inter-individual variation in a particular variable is of interest and
the number of participants M with data available is satisfactorily high, one
appropriate approach is to aggregate the variable by the individual, such that
each individual is mapped to only one value (e.g., mean value) of that variable.
This is the approach we adopted for the analysis in Section 4.3. Interpretations
made from models created on such aggregated data would be regarding the
cross-participant patterns rather than within-participant ones. Second, if one
has limited amount of data available that does not justify aggregation, an
appropriate solution is to use mixed effect models to account for individual
differences between participants. We used a mixed effect ordinal regression
models in Section 4.5. An individual random effect could be added to both
the intercept or a variable coefficient of a (generalized) linear model and the
eventual selection will need to depend on model selection metrics or tests such
as AIC, BIC, or a likelihood ratio test to determine whether the added effect
(thus increasing variance explained) is worth the increased model complexity. In
our experiments discussed in Section 4.5, specifically those presented in Table
2 and Figure 9, we found that adding only an individual random effect to the
intercept is sufficient and the most appropriate.

Most of the analysis done in this paper (Section 4) falls in the category of
correlation analysis, where one builds statistical models to fit to all data to learn
the correlations between variables, and evaluate the models using some goodness-
of-fit metric (e.g., adjusted R squared, significance). Another type of tasks
researchers often conduct with multi-modal human-centric data is predictive
modeling, for which the multiple measurement issue may have different and
nuanced implications. In a predictive modeling task, one builds (trains) a model
to fit to a subset of all data and seeks to evaluate (test) the predictive power of
the model using the remaining subset with a prediction performance metric (e.g.,
area under ROC curve). When the multiple measurement issue is present (i.e.,
N > M), the train-test partition needs to be carefully executed based on the
nature of the predictive task at hand. If the predictive modeling task focuses on
detecting (especially previously unknown) individuals that belong in a certain
class (e.g., clinical diagnosis), it is advisable to assign observations from different
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participants into the training and test set because having the same participant’s
(thus correlated) observations in both sets data will inflate predictive performance.
However, if the predictive task aims to monitor a participant’s status and raise
warnings when undesirable changes are detected, then the correlation between
observations from the same participant becomes a valuable source of information
to capitalize on: by training models using past observations from a participant,
future observations of the same individual, being correlated with her previous
ones, become easier for the models to classify. This is why personalized models
typically perform better than generic models for personal monitoring tasks [10].
To achieve decent performance for a personal monitoring task, an initial period
of model training tuning is usually necessary (as opposed to a “cold start”);
sometimes, the optimal strategy for improved prediction performance may be
a hybrid model using both other participants’ data and the same participant’s
previous data.

6 Conclusion

We conducted the UT1000 Project, a multi-modal data collection study using a
variety of technologies and methods to monitor and understand aspects of the
health, behavior, and living environments (See Figure 3) of a college student
cohort of more than 1500 participants for 3 weeks. Some participants voluntarily
monitored themselves for several more weeks after the official 3-week study
period ended. The project is highly novel due to not only the large scale of
participation but also the emphasis on incorporating the monitoring of personal
living environment with health and behavior sensing to achieve a multi-faceted
dashboard of human-centric information. With many types and sources of
data at hand, we proposed a conceptual framework systematically organizing
human-centric data modalities and their corresponding technologies and methods
with respect to their temporal coverage and spatial freedom, which is further
helpful for guiding data collection and research question formulation. Temporal
coverage and spatial freedom overlap with ecological validity and are constrained
by the unobtrusiveness of the method. Hurdles to unobtrusiveness include the
size, weight, and power need of a device, requirement for human attention and
maintenance, and many potential others. A general direction of evolution for
human-centric design and technology is to become more portable, convenient,
and user-friendly thus affording higher and higher unobtrusiveness and ecological
validity for its capacity of understanding and assisting humans, until it is truly
“woven into the fabric of everyday life” [38].

We were able to collect from a large participant cohort satisfactorily complete
multi-modal data in terms of both data continuity and participant compliance
(see Figure 4 and discussions in Section 4.2). Our findings with EMA data
point to differential emotional experience associated with the places in which
one spends time and the people with whom one spends time. Certain aspects
of emotions are more interlinked than others; for example, a person’s sadness
is especially connected with feelings of loneliness but less so with contentment
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and stress. Our smartphone data confirms the benefit of a broadly construed
“activeness” in life, whereby individuals that move more and spend time at more
different places generally enjoy a more healthy mind. Fitbit findings support
the utility of Fitbit’s sleep measuring capability and reveal several significant
correlations between Fitbit sleep metrics and self-reported sleep restfulness and
mood outcomes. Lastly, the environmental sensors in our BEVO Beacons are
capable of detecting abnormalities in an individual’s indoor living environment,
some of which are useful for detecting daily activities and lifestyle choices.

Several limitations exist in our study, which we would like to address in
future work. First, we would like to monitor participants for a longer period of
time than three weeks so that we are be able to observe more reliable patterns
of behavioral variation and build more accurate personalized predictive models.
Second, there is a sharp imbalance between the availability of smartphone and
EMA data and the availability of Fitbit and BEVO Beacon data due to our
incentive structure and hardware availability. As a result, analyses involving
Fitbit and BEVO Beacon data encountered the problem of small sample size and
our results are of a preliminary and exploratory nature rather than final verdicts.
We are preparing for a third deployment of the UT1000 Project that directly
addresses these limitations by recruiting (potentially fewer) participants who
will commit to longer study periods as well as increasing the number of Fitbits
and BEVO Beacons distributed. We anticipate the collection, integration, and
mining of diverse modalities of human-centric data from different technologies
and methods and of various degrees of temporal coverage and spatial freedom to
be key to the development of a new generation of digital solutions for personal
well-being enhancement.
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[2] Torbjörn Âkerstedt. Psychosocial stress and impaired sleep. Scandinavian
journal of work, environment & health, pages 493–501, 2006.

[3] Roger G Barker and Herbert F Wright. One boy’s day: A specimen record
of behavior. New York: Harper, 1951.

[4] Kelly Glazer Baron, Jennifer Duffecy, Mark A Berendsen, Ivy Cheung Mason,
Emily G Lattie, and Natalie C Manalo. Feeling validated yet? a scoping

31



review of the use of consumer-targeted wearable and mobile technology to
measure and improve sleep. Sleep medicine reviews, 40:151–159, 2018.

[5] Jiang Bian, Yi Guo, Mengjun Xie, Alice E Parish, Isaac Wardlaw, Rita
Brown, François Modave, Dong Zheng, and Tamara T Perry. Exploring the
association between self-reported asthma impact and fitbit-derived sleep
quality and physical activity measures in adolescents. JMIR mHealth and
uHealth, 5(7):e105, 2017.

[6] Niall Bolger and Jean-Philippe Laurenceau. Intensive longitudinal methods:
An introduction to diary and experience sampling research. Guilford Press,
2013.

[7] Mehdi Boukhechba, Alexander R Daros, Karl Fua, Philip I Chow, Bethany A
Teachman, and Laura E Barnes. Demonicsalmon: Monitoring mental health
and social interactions of college students using smartphones. Smart Health,
9:192–203, 2018.

[8] Luca Canzian and Mirco Musolesi. Trajectories of depression: unobtrusive
monitoring of depressive states by means of smartphone mobility traces
analysis. In Proceedings of the 2015 ACM international joint conference on
pervasive and ubiquitous computing, pages 1293–1304, 2015.

[9] Rui Chen, Angela Aherrera, Chineye Isichei, Pablo Olmedo, Stephanie
Jarmul, Joanna E Cohen, Ana Navas-Acien, and Ana M Rule. Assessment
of indoor air quality at an electronic cigarette (vaping) convention. Journal
of exposure science & environmental epidemiology, 28(6):522–529, 2018.

[10] Marios Constantinides, Jonas Busk, Aleksandar Matic, Maria Faurholt-
Jepsen, Lars Vedel Kessing, and Jakob E Bardram. Personalized versus
generic mood prediction models in bipolar disorder. In Proceedings of the
2018 ACM International Joint Conference and 2018 International Sympo-
sium on Pervasive and Ubiquitous Computing and Wearable Computers,
pages 1700–1707, 2018.

[11] Victor P Cornet and Richard J Holden. Systematic review of smartphone-
based passive sensing for health and wellbeing. Journal of biomedical
informatics, 77:120–132, 2018.

[12] Massimiliano de Zambotti, Aimee Goldstone, Stephanie Claudatos, Ian M
Colrain, and Fiona C Baker. A validation study of fitbit charge 2™ compared
with polysomnography in adults. Chronobiology international, 35(4):465–
476, 2018.

[13] Trinh Minh Tri Do, Jan Blom, and Daniel Gatica-Perez. Smartphone usage
in the wild: a large-scale analysis of applications and context. In Proceedings
of the 13th international conference on multimodal interfaces, pages 353–360,
2011.

32



[14] Brett A Dolezal, Eric V Neufeld, David M Boland, Jennifer L Martin, and
Christopher B Cooper. Interrelationship between sleep and exercise: a
systematic review. Advances in preventive medicine, 2017, 2017.

[15] David L Eaton, Leslie Y Kwan, Kathleen Stratton, Engineering National
Academies of Sciences, Medicine, et al. E-cigarette devices, uses, and expo-
sures. In Public Health Consequences of E-Cigarettes. National Academies
Press (US), 2018.

[16] Gabriella M Harari, Nicholas D Lane, Rui Wang, Benjamin S Crosier, An-
drew T Campbell, and Samuel D Gosling. Using smartphones to collect
behavioral data in psychological science: Opportunities, practical considera-
tions, and challenges. Perspectives on Psychological Science, 11(6):838–854,
2016.

[17] Gabriella M Harari, Sandrine R Müller, Min SH Aung, and Peter J Rentfrow.
Smartphone sensing methods for studying behavior in everyday life. Current
opinion in behavioral sciences, 18:83–90, 2017.

[18] Gabriella M Harari, Sandrine R Müller, Varun Mishra, Rui Wang, An-
drew T Campbell, Peter J Rentfrow, and Samuel D Gosling. An evaluation
of students’ interest in and compliance with self-tracking methods: Rec-
ommendations for incentives based on three smartphone sensing studies.
Social Psychological and Personality Science, 8(5):479–492, 2017.

[19] Jong Hee Kang, William Welbourne, Benjamin Stewart, and Gaetano
Borriello. Extracting places from traces of locations. ACM SIGMOBILE
Mobile Computing and Communications Review, 9(3):58–68, 2005.

[20] George A Kelley and Kristi Sharpe Kelley. Exercise and sleep: a systematic
review of previous meta-analyses. Journal of Evidence-Based Medicine,
10(1):26–36, 2017.

[21] Eui-Joong Kim and Joel E Dimsdale. The effect of psychosocial stress on
sleep: a review of polysomnographic evidence. Behavioral sleep medicine,
5(4):256–278, 2007.

[22] Niko Kiukkonen, Jan Blom, Olivier Dousse, Daniel Gatica-Perez, and Juha
Laurila. Towards rich mobile phone datasets: Lausanne data collection
campaign. Proc. ICPS, Berlin, 68, 2010.

[23] Zilu Liang and Mario Alberto Chapa-Martell. Accuracy of fitbit wristbands
in measuring sleep stage transitions and the effect of user-specific factors.
JMIR mHealth and uHealth, 7(6):e13384, 2019.

[24] Zilu Liang and Mario Alberto Chapa Martell. Validity of consumer activity
wristbands and wearable eeg for measuring overall sleep parameters and
sleep structure in free-living conditions. Journal of Healthcare Informatics
Research, 2(1-2):152–178, 2018.

33



[25] Sanjana Mendu, Mehdi Boukhechba, Anna Baglione, Sonia Baee, Congyu
Wu, and Laura Barnes. Socialtext: A framework for understanding the
relationship between digital communication patterns and mental health. In
2019 IEEE 13th international conference on semantic computing (ICSC),
pages 428–433. IEEE, 2019.

[26] David Mintz. Technical assistance document for the reporting of daily
air quality-the air quality index (aqi). Tech. Research Triangle Park, US
Environmental Protection Agency, 2009.

[27] Rachael Purta, Stephen Mattingly, Lixing Song, Omar Lizardo, David
Hachen, Christian Poellabauer, and Aaron Striegel. Experiences measuring
sleep and physical activity patterns across a large college cohort with fitbits.
In Proceedings of the 2016 ACM international symposium on wearable
computers, pages 28–35, 2016.

[28] Darius A Rohani, Maria Faurholt-Jepsen, Lars Vedel Kessing, and Jakob E
Bardram. Correlations between objective behavioral features collected from
mobile and wearable devices and depressive mood symptoms in patients
with affective disorders: systematic review. JMIR mHealth and uHealth,
6(8):e165, 2018.

[29] Edward J Silva and Jeanne F Duffy. Sleep inertia varies with circadian
phase and sleep stage in older adults. Behavioral neuroscience, 122(4):928,
2008.

[30] Arkadiusz Stopczynski, Vedran Sekara, Piotr Sapiezynski, Andrea Cuttone,
Mette My Madsen, Jakob Eg Larsen, and Sune Lehmann. Measuring
large-scale social networks with high resolution. PloS one, 9(4):e95978,
2014.

[31] Dorthe Kirkegaard Thomsen, Mimi Yung Mehlsen, Søren Christensen, and
Robert Zachariae. Rumination—relationship with negative mood and sleep
quality. Personality and Individual Differences, 34(7):1293–1301, 2003.

[32] Matthew A Tucker, Yasutaka Hirota, Erin J Wamsley, Hiuyan Lau, Annie
Chaklader, and William Fishbein. A daytime nap containing solely non-rem
sleep enhances declarative but not procedural memory. Neurobiology of
learning and memory, 86(2):241–247, 2006.

[33] M Vandekerckhove, R Weiss, C Schotte, Vasileios Exadaktylos, Bart Haex,
J Verbraecken, and R Cluydts. The role of presleep negative emotion in
sleep physiology. Psychophysiology, 48(12):1738–1744, 2011.

[34] Rui Wang, Fanglin Chen, Zhenyu Chen, Tianxing Li, Gabriella Harari,
Stefanie Tignor, Xia Zhou, Dror Ben-Zeev, and Andrew T Campbell. Stu-
dentlife: assessing mental health, academic performance and behavioral
trends of college students using smartphones. In Proceedings of the 2014
ACM international joint conference on pervasive and ubiquitous computing,
pages 3–14. ACM, 2014.

34



[35] Johan Wannenburg and Reza Malekian. Physical activity recognition from
smartphone accelerometer data for user context awareness sensing. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 47(12):3142–3149,
2016.

[36] Apichai Wattanapisit and Sanhapan Thanamee. Evidence behind 10,000
steps walking. Journal of Health Research, 31(3):241–248, 2017.

[37] Eugene J Webb, Donald T Campbell, Richard D Schwartz, and Lee Sechrest.
Unobtrusive measures: Non-reactive research in the social sciences. Chicago:
Rand McNally, 1966.

[38] Mark Weiser. The computer for the 21st century. ACM SIGMOBILE mobile
computing and communications review, 3(3):3–11, 1999.

[39] Congyu Wu, Mehdi Boukhechba, Lihua Cai, Laura E Barnes, and Matthew S
Gerber. Improving momentary stress measurement and prediction with
bluetooth encounter networks. Smart Health, 9:219–231, 2018.

[40] Matthew J Zawadzki, Jennifer E Graham, and William Gerin. Rumination
and anxiety mediate the effect of loneliness on depressed mood and sleep
quality in college students. Health Psychology, 32(2):212, 2013.

[41] Long Zhai, Hua Zhang, and Dongfeng Zhang. Sleep duration and depression
among adults: A meta-analysis of prospective studies. Depression and
anxiety, 32(9):664–670, 2015.

35



Appendix A: HEH Survey Questions

Question text Variable
Type

Answer
Options

Example

Which best describes your current living situation: Str Apartment,
Dormi-
tory,
Stand-
alone
House

Apartment

How many roommates? Int Enter
Value

2

How many housemates? Int Enter
Value

2

How many of your housemates and roommates are female? Int Enter
Value

2

How many of your housemates and roommates are male? Int Enter
Value

0

How many of your housemates and roommates are nonbi-
nary?

Int Enter
Value

1

Does anyone smoke cigarettes in the house? Str Yes, No No
Does anyone vape in the house? Str Yes, No No
Do you have any pets? Str Cat, Dog,

Other,
N/A

Dog

How many dogs? Int Enter
Value

0

How many cats? Int Enter
Value

0

How many ‘other’ pets? Int Enter
Value

0

What floor is your living space on (count ground floor as 0
and count up from there)?

Int Enter
Value

5

Does the door to your apartment connect to the: Str indoor
corridor
(not open
to the
outside),
indoor
corridor
(open
to the
outside),
outdoors

Housemates

Does your living space have central air conditioning and
heating?

Str Yes, No No

If yes, do you have control over changing the air conditioning
filter?

Str Yes, No No

If yes, how often do you change it (in months)? Str Enter Re-
sponse

Varies

If yes, how do you choose the filter (price, quality)? Str Enter Re-
sponse

Varies

If yes, which filter do you choose (brand and specific prod-
uct)?

Str Enter Re-
sponse

Varies
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If no, how often does your apartment manager change it? Str Enter Re-
sponse

Varies

Did you receive a swab kit as a participant in the extended
study?

Str Yes, No No

If yes, did you swab your: Str AC vent,
AC filter

AC Vent

Do you have control over the temperature of the home? Str Yes, No No
If yes, how often per week do you typically set/change it? Int Enter

Value
3

If yes, are you the only one who uses the thermostat? Str Yes, No No
If yes, what temperature is normally chosen in winter (de-
grees F)?

Int Enter
Value

77

If yes, what temperature is normally chosen in summer (de-
grees F)?

Int Enter
Value

79

Do you open your windows to ventilate your home? Str Yes, No No
If yes, how many times per week? Int Enter

Value
3

Does your living space have water damage? Str Yes, No No
If yes, indicate what space has water damage (room type,
surface type):

Str Enter Re-
sponse

Varies

Does your home have moldy odor when you enter the space? Str Yes, No No
Has anyone commented on bad odors when entering your
home?

Str Yes, No No

Do you use ‘air cleaner’ devices? Str Yes, No No
Does your house have carpet? Str Yes, No No
If yes, about what % of the total area is carpeted? Int Enter

Value
50

Does your house have: Str hardwood,
tile floors

hardwood

If yes, about what % of the total area is hardwood? Int Enter
Value

25

If yes, about what % of the total area is tile floor? Int Enter
Value

25

Do you cook at home? Str Yes, No No
Do you turn on the kitchen exhaust fan? Str Yes, No No
In the past three weeks, have you had the flu? Str Yes, No No
Have you gotten your flu shot this year? Str Yes, No No
If no, are you planning on getting the flu shot? Str Yes, No No
In the past three weeks, have you caught a cold? Str Yes, No No
In the past three weeks, have you suffered from allergies? Str Yes, No No
In the past three weeks, have you suffered from a gastroin-
testinal illness?

Str Yes, No No

In the past three weeks, have you taken antibiotics? Str Yes, No No
Do you suffer from asthma (doctor-diagnosed)? Str Yes, No No
Did you receive a silicon band as a participant in the ex-
tended study?

Str Yes, No No

If yes, did you consistently wear it as indicated? Str Yes, No No
Do you use perfumes, cologne, or body lotions? Str Yes, No No
If yes, how often per day do you apply these products? Int Enter

Value
2

How often do you wash your hands per day? Int Enter
Value

10

How often do you take a shower or bathe per week? Int Enter
Value

10

Do you use electric scooters? Str Yes, No No
If yes, how many times a day? Int Enter

Value
1

If yes, how many times per week? Int Enter
Value

1
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Appendix B: EMA Questions

Survey
Distri-
bution

Question
Type

Question Text Answer Options Example

Morning
only

Radio
Button

How many hours
did you sleep LAST
NIGHT?

0 hours; did not sleep; 1-2 hours; 2-3 hours; 3-4
hours; 4-5 hours; 5-6 hours; 6-7 hours; 7-8 hours;
8-9 hours; 9-10 hours; 10-11 hours; 11-12 hours;
more than 12 hours

8-9 hours

Morning
only

Radio
Button

How restful was
your sleep?

Not at all restful; Slightly restful; Somewhat rest-
ful; Very restful

Somewhat
restful

Morning
only

Radio
Button

How refreshed did
you feel after your
sleep?

Not at all refreshed; Slightly refreshed; Somewhat
refreshed; Very refreshed

Somewhat
refreshed

All Checkbox please describe your
behavior during the
PAST FIFTEEN
MINUTES... I
spent MOST of
my time in the
following place:

Bar; Party; Cafe; Restaurant; Campus; Frater-
nity; Sorority House; Gym; Home (dorm; apart-
ment); Library; Religious facility; Store / Mall;
Work; Vehicle; Friend; None of the above; other

other

All Checkbox please describe your
behavior during the
PAST FIFTEEN
MINUTES...I spent
MOST of my time
with the following
people:

Classmates; students; Co-workers; Family;
Friends; No one; alone; Roommates; Significant
other; Strangers; Other

Friends

All Checkbox please describe your
behavior during the
PAST FIFTEEN
MINUTES...I spent
MOST of my time

Attending classes; meetings; Browsing the Inter-
net; using social media; Commuting; traveling;
Doing household chores; running errands; Eat-
ing; drinking; Exercising; physical activity; sports;
Resting; napping; doing nothing; Studying; read-
ing; preparing for an exam; Talking; texting; so-
cializing; Watching TV; movies; Working at job;
None of the above; Other

napping

All Checkbox please describe your
behavior during the
PAST FIFTEEN
MINUTES I spent
time interacting
with others by:

Talking in person; Talking on the phone; Chatting
on Whatsapp or other chat app; Chatting on a
dating app; Emailing; Video-chatting; Interacting
on Facebook; Interacting on Instagram; Interact-
ing on Snapchat; Interacting on Twitter; Other
form of social interaction; Not applicable; was not
interacting with anyone

Talking in
person

All Radio
Button

I am feeling CON-
TENT:

Not at all; A little bit; Quite a bit; Very much Very
much

All Radio
Button

I am feeling
STRESSED:

Not at all; A little bit; Quite a bit; Very much Quite a
bit

All Radio
Button

I am feeling
LONELY:

Not at all; A little bit; Quite a bit; Very much A little
bit

All Radio
Button

I am feeling SAD: Not at all; A little bit; Quite a bit; Very much Not at all

All Radio
Button

My ENERGY
LEVEL is:

Low energy; Somewhat low energy; Neutral;
Somewhat high energy; High energy

High
energy
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Appendix C: Beiwe Sensing Parameters

A comprehensive description of the passive data the Beiwe platform collects
can be found on the developer’s Wiki platform: https://github.com/onnela-
lab/beiwe/wiki/Passive-Data. A short description of the data collected and used
in this study is summarized below.

Data Label Short Description Operating
Systems

Variables Collected

Accelerometer Indication of participant movement iOS, An-
droid

timestamp, accuracy, x, y, z

GPS Phone’s location iOS, An-
droid

timestamp, latitude, longi-
tude, altitude, accuracy

Power State Phone screen, charging, or percentage of
battery

iOS, An-
droid

timestamp, event

Bluetooth Records hashed MAC addresses of nearby
devices

Android timestamp, hashed ID

Reachability Phone is connected to WiFi, cellular net-
work, in airplane mode, or no service

iOS timestamp, event
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