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Abstract: The challenges of insufficient residence time for crystal growing and transfer line 

blockage in conventional continuous MSMPR operations are still not well addressed. 

Periodic flow crystallization is a novel method whereby controlled periodic disruptions are 

applied to the inlet and outlet flows of an MSMPR crystallizer in order to increase its 

residence time. A dynamic model of residence time distribution in an MSMPR crystallizer 

was first developed to demonstrate the periodic flow operation. Besides, process models of 

periodic flow crystallizations were developed with an aim to provide a better understanding 

and improve the performance of the periodic flow operation, wherein the crystallization 

mechanisms and kinetics of the glycine-water system were estimated from batch cooling 

crystallization experiments. Experiments of periodic flow crystallizations were also 

conducted in single- / three-stage MSMPR crystallizers to validate the process models and 

demonstrate the advantages of using periodic flow operation in MSMPR stages. 
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Introduction 

      Crystallization is one of the most important unit operations for separation and purification 

of nearly 90% of organic molecules in the pharmaceutical and fine chemical sectors. 

Traditionally, batch crystallization has been adopted to adjust to the stringent regulations in 

product quality and to the flexible demands of the market. However, rising market 

competitiveness due to patent expiration and the need to reduce manufacturing costs have 

now driven the future of pharmaceutical industries towards continuous manufacturing, which 

have potentials for improvements in quality control, equipment footprint, and energy and 

labour costs, and so on.1, 2  

      In the past decade, continuous manufacturing and crystallization has been a highly active 

research field, as part of the campaign aimed at developing the next generation technologies 

for the pharmaceutical and fine chemical industries.3, 4 Generally, there are two types of 

continuous crystallizers that are most investigated, viz., the tubular and the stirred-tank 

designs.5 Regardless of recycling, these two designs help to achieve idealised flow patterns, 

namely the plug-flow6 and the mixed-suspension mixed-product removal (MSMPR) 

operations.7 Derivatives of these two designs have resolved some of the practical concerns 

related to the continuous crystallization, such as the use of:  (1) a continuous oscillatory 

baffled crystallizer (COBC) to deal with the sedimentation of crystals at low through-flow 

Reynolds number in a straight tube;8 (2) a slug-flow crystallizer design wherein liquid and 

gas are introduced into one end of the tube to spontaneously generate alternating slugs of 

liquid and gas to generate large uniform crystals.9 Other examples include: (3) the multi-

segment multi-addition plug-flow crystallizer (MSMA-PFC) to tackle problems with 

supersaturation control 1,10,11 or fines dissolution along the tube;12 (4) cascaded multi-stage 

continuous MSMPR crystallizers to enhance the product yield;13,14,15 (5) a continuous 
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MSMPR crystallizer with a fines trap and a product classifier to achieve a high production 

rate and a low polydispersity of the crystals;16 (6) similar work was also reported of using an 

“inverted” product classifier unit in a modified continuous MSMPR crystallizer, wherein 

small crystals are withdrawn as product, and larger crystals recycled to a dissolver.17 

       However, one of the important issues for these two designs, in terms of the material 

residence time, has often been the concern for chemical engineers. For example, although a 

narrow residence time distribution could be achieved, a relatively long tube is necessary for 

slow growing crystals to achieve sufficient residence time and to reach a desired particle size 

for tubular crystallizers. What’s more, the long tube design also makes difficult the delicate 

control of supersaturation by either multi-section jacket cooling or multi-addition of anti-

solvent.10,11,12,18 In contrast, the broaden residence time distribution of continuous MSMPR 

operation adversely affects the critical quality attributes of the final products, e.g. by 

broadening the crystal size distribution (CSD). And to extend the material residence time, 

large-scale MSMPR crystallizer have to be implemented, in which the scaling up of a stirred 

tank will impose another problem of the slurry mixing uniformity.19 Hence, one of the 

objectives of our work is trying to tailor the residence time distribution in MSMPR 

crystallizers to enhance the quality by design (QbD) paradigm shift, i.e., quality assured by 

better product and process understanding with the help of mathematical modelling, in the 

pharmaceutical and fine chemical manufacturing sectors.  

       Commonly, an MSMPR crystallization is operated with continuous feeding the solution 

to and withdrawing the slurry from the crystallizer tank, viz., the continuous flow MSMPR 

crystallization. For a given operating volume, it is necessary to reduce the net inlet and outlet 

stream flow rates in order to obtain enough residence time for the crystals to grow, but this 

approach often leads to transfer line fouling and blockage. Periodic flow operation of an 

MSMPR crystallizer is a novel operation whereby periodic disruptions are applied to the inlet 
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and outlet flows with an aim to retain the slurry in the crystallizer 20. In such way, the 

residence time distribution can then be manipulated by having a tuneable holding time within 

each periodic cycle, which, for example, is able to significantly increase the mean residence 

time for crystallization systems without further broadening its distribution. There are also 

benefits from the intermittently operated feeding and withdrawing streams: increasing these 

flow rates over short duration, helps to alleviate the usual transfer line fouling and blockage 

problems. Notably, the periodic flow crystallization is a hybrid of batch and continuous 

crystallization, and if the transient effects caused by periodic flow are controlled within 

narrow limits in the design space, then the final crystal product attributes will be maintained 

in a “state of controlled operation”, as required by FDA regulations. Comparisons of the 

batch, continuous, and periodic operations of a stirred tank crystallizer have been summarised 

in Table 1. In addition, the periodic flow crystallization can also be applied to cascaded 

multi-stage MSMPR crystallizers to facilitate the controlled nucleation and extended crystal 

growth. 

      In this study, a dynamic model for residence time distribution in an MSMPR crystallizer 

was first developed to demonstrate the concept of periodic flow operation. Flowsheet process 

models were then developed for periodic flow crystallization processes using single- or three- 

stage MSMPR crystallizers in order to provide a better understanding and improve the 

performance of this “state of controlled operation”. The modelling framework was based on 

the Process Systems Enterprise’s gCRYSTAL platform, wherein crystallization mechanisms 

and kinetics of the model glycine-water system were estimated from batch cooling 

crystallization experiments equipped with process analytic tools (PATs) for solute 

concentration and crystal size measurements. The models were shown to agree well with the 

experimental observations from the periodic flow crystallization process, which would 

contribute to the optimal design and control of periodic flow operations in the future. 
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Materials and experiments 

Glycine (GLY, ≥ 99% in purity, Sigma Aldrich, UK) dissolved in deionized water (H2O) 

was used as a model cooling crystallization system in this work, with experiments of batch, 

continuous, and periodic flow crystallizations conducted in bench-scale stirred tank 

crystallizers. The following briefly summarises the experimental procedures.21  

Firstly, the metastable zone width (MSZW) of GLY was determined by the polythermal 

method, in which unseeded batch cooling crystallization experiments were carried out, with 

initial concentrations ranging from 0.2800 to 0.4223 (g GLY/g H2O), and with constant 

cooling rates from 0.1 to 0.7 oC per minute. The solubility of GLY was obtained from 

literature data.22 The MSZW can be thought as a reflection of crystallization mechanism and 

kinetics, viz., nucleation and crystal growth, of a crystallization system. Hence, it has been 

widely used for crystallization kinetic studies, for example, Mitchell and his colleagues 

estimated the primary nucleation and crystal growth kinetics for paracetamol and ethanol 

crystallization system.23, 24 In this study, however, not only the MSZW data, but the whole 

courses of various batch cooling crystallizations were used to estimate the crystallization 

kinetics, including primary nucleation, secondary nucleation, and crystal growth. A 

population balance based process model25, 26 was developed and applied to estimate the 

kinetic parameters from four representative batch experiments, as shown in Table 2.  

Furthermore, a series of periodic flow crystallization experiments using single or 

cascaded three-stage MSMPR crystallizers were conducted to independently validate the 

crystallization kinetics estimated from the above batch experiments. The block diagrams of 

the experimental setups are shown in Figure 1. Feeding solutions for the periodic flow 

operations were first prepared with a saturated concentration of 0.2278 ± 0.001 (g GLY/g 

H2O) at 20 oC in a 5 Litre vessel. They were then cooled to 19 oC and seeded with 2.5 % 
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(28.47 g GLY) of sieved crystals and held for a period of 30 min to allow crystals to heal; the 

supersaturation ratio of the feed suspension was maintained at 1.0221 ± 0.003 and no 

significant secondary nucleation was found in the vessel with the focused beam reflectance 

measurement (FBRM) probe monitoring the total counts during preparation. 

At the start-up of a single-stage periodic flow MSMPR crystallization (Figure 1), the 

crystallizer was first cooled to 10 °C, after which the feeding suspension was added at a flow 

rate of 52.7 g/min by Pump 1 over a duration of 9.36 min to give a final operating volume of 

approximately 500 mL. This was then followed by the switch-off of Pump 1 and a holding 

period of 10.64 min. Thereafter, a pumping period of simultaneous addition (Pump 1) of 

feeding suspension to and withdrawal (Pump 2) of product slurry from the MSMPR 

crystallizer was initiated and lasted for 9.36 min, both at a fixed rate of 52.7 g/min. This was 

again followed by the switch-off of Pump 1 & 2 and another holding period of 10.64 min. 

Thereafter a repeated switch between pumping period and holding period continued until the 

MSMPR crystallizer reached a “steady” and repeatable oscillatory, viz., the “state of 

controlled operation”. The corresponding volume profile could be found in Figure 2(a). 

Incidentally, the holding period of time of 10.64 min was chosen empirically by observing 

the desupersaturation rate of glycine during the holding period, for other crystallization 

system, a longer holding time period would be expected for slower growing crystals, e.g. 

paracetamol. 

       In the case of a three-stage periodic flow MSMPR crystallization, the same start-up 

procedures were implemented, in sequence, to the first (MSMPR1), second (MSMPR2), and 

third (MSMPR3) crystallizer to fill up the vessels in order and finally reach a steady periodic 

flow operation. The operating volume of each MSMPR crystallizer was also approximately 

500 mL, but their temperatures were set to 17, 14, and 10 oC, respectively, as shown in 

Figure 1. The idea here is to implement a step-wise cooling profile, with an aim to reduce the 
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supersaturation level and also increase the total mean residence time and thus improve both 

the product mean crystal size and yield.  

Importantly, it should be noted here that in the above implementation, only synchronous 

addition and withdrawal of materials are considered in the pumping period, defined here as 

the coupled periodic flow operation, which leads to a constant operating volume for each 

vessel after start-up. Hence, the time-averaged mean residence time of the single-stage 

periodic flow MSMPR crystallizer (RTPO) is the sum of the pumping period (9.36 min) and 

the holding period (10.64 min), i.e., 20 min. By adding a holding period, the mean residence 

time was significantly increased by 10.64 min when compared to a single-stage continuous 

flow MSMPR crystallizer operated at the same volume and with the same pumping flow rate. 

Accordingly, the RTPO for a three-stage periodic flow MSMPR crystallization is tripled to 60 

min. However, due to the coupled operation of feeding and withdrawing, the corresponding 

residence time distributions of periodic flow MSMPR crystallizations would be as broad as 

that of continuous flow MSMPR crystallizer, which also attain the same mean residence time, 

i.e., by either lowering the flow rate (leads to particle setting and classification), or using a 

larger tank, which is twice the operating volume of the periodic flow process. In this regard, 

the periodic flow operation shows the benefits of reducing the equipment footprint and cost. 

On the other hand, the periodic flow operation can also be operated in an asynchronous 

way, i.e., after the first filling of a single-stage MSMPR crystallizer, a holding period is 

applied to the pumps for a period of 10.64 min. Thereafter, the outlet pump from the 

crystallizer is switched on and half the volume is withdrawn, this is immediately followed by 

refilling with fresh feed as the inlet pump is switch on. The total time period for both 

pumping periods is 9.36 min (4.68 min each). Herein, it was described as the decoupled 

periodic flow operation. Schemes of the operating volume of the two periodic operation are 

illustrated in Figure 2. The benefits of the decoupled periodic operation are that it further 



8 
 

extends the mean residence time and minimises the amount of feeding slurry to be directly 

washed out to the next stage, thus reducing the fine crystals at the final products.  

Worth mentioning that a cascaded three-stage continuous flow MSMPR crystallization 

was also performed to serve as a benchmark to demonstrate the advantages of the periodic 

flow crystallization. Additionally, in all cases, the final slurry product withdrawn from each 

experiment was filtered and the final crystals were collected and dried at 40 oC for 24 hours. 

Besides, seed crystal samples were also taken and measured using laser diffraction in 

Malvern MasterSizer 2000 to obtain crystal size distributions. During all the crystallization 

experiments, a stirring speed of 400 rpm was found to be sufficient for particle suspension, 

and in situ PAT (Process Analytical Technology) tools were implemented to monitor the 

crystallization process, e.g. Raman spectroscopy was used to measure the GLY concentration, 

the focused beam reflectance measurement (FBRM) and particle vision microscopy (PVM) 

were used to observe the crystal counts, size, and shape collectively. An in-house developed 

crystallization process informatics system (CryPRINS) software tool was also applied for 

process monitoring and temperature control.  

 

Mathematical models 

Dynamic model of residence time distribution 

The residence time distribution of the slurry in a crystallizer, providing major 

information on mean residence time and its corresponding standard deviation, is often studied 

for many innovative continuous crystallization techniques.27, 28 Although a continuously 

operated stirred-tank crystallizer is usually assumed to obtain a perfect micro-mixing for 

liquid-solid phases in the vessel,19 the effect of macro-mixing due to feeding and withdrawing 
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also plays a critical role in the crystallization operation and the final crystal attributes, i.e., 

crystal size distribution. Accordingly, a generic dynamic model was first developed for the 

residence time distribution of a stirred-tank crystallizer subject to different feeding and 

withdrawing operating patterns.      

     The system governing equations for the residence time distribution in a well-mixed stirred 

tank can be characterized as follows. 
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where t is the real time, s; V is the operating volume, m3; θ is the age or residence time inside 

the vessel, s; vi is the feeding flowrate of ith stream, m3s-1; vj is the withdrawing flowrate of 

jth stream, m3s-1; W (t, θ) is the corresponding residence time distribution (RTD), s-1; Fi (t, θ) 

is the RTD of ith feeding stream, s-1; Ej (t, θ) is the RTD of jth exceeding stream, s-1, and is 

identical to the W(t, θ) for a well-mixed stirred tank. The corresponding initial and boundary 

conditions are listed as below. 

𝑉𝑉(0,𝜕𝜕) = 𝑉𝑉0(𝜕𝜕) (3) 

𝑉𝑉(0) = 0 (4) 

𝑉𝑉(𝜕𝜕, 0) = 0 (5) 

where W0(θ) is the initial residence time distribution in the vessel, s-1. If the vessel starts from 

empty as in Eq. (4), W0(θ) is a Dirac delta function (distribution) δ, viz., W0 is zero 

everywhere except at zero, with an integral of one over the entire residence time θ. Besides, 

Fi(t, θ) is also a δ function if it is a fresh feed into the vessel. 
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       Owing to the simple convection term of  𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ = 1 , the backward finite difference 

method (BFDM) was used here to discretise the above partial differential equation (PDE) (1) 

and solve the resulting ordinary differential equations (ODEs) together with Eq. (2) in 

MATLAB using “ode45”. 

Flowsheet models of periodic flow crystallization process 

Towards better process understanding and design of the novel periodic flow 

crystallization in MSMPR stages, rigorous population balance based mathematical modelling 

and flowsheet simulation were employed in this study by implementing the gCRYSTAL 4.0 

(Process Systems Enterprise, UK) software package, which offers various particle size-

change mechanisms and kinetics for characterization of crystallization process, as well as 

convenient toolboxes for parameter estimation and process optimisation, etc.. The following 

briefly summarises the major steps in the implementation of gCRYSTAL for kinetic 

parameter estimation using batch cooling crystallization experiments and the simulation of 

periodic flow crystallizations. 

First, system information and material properties of glycine and water, e.g., molecular 

weight, density, solubility, etc., which could be obtained elsewhere in the literature or 

chemical handbooks,22 were configured in the “global specification” module in gCRYSTAL. 

By adopting the module of “Crystallizer MSMPR” in the model library, configurations of the 

batch stirred-tank crystallizer were then set up according to the actual experimental 

conditions. In terms of the crystallization mechanisms and kinetics, instead of using 

theoretical, first-principles models for nucleation, crystal growth, and agglomeration, semi-

empirical power-law kinetic models were used here for chemical engineering purposes. For 

example, herein, a secondary nucleation model based upon the work of Ref. 29 was used to 

describe the nucleation effect due to attrition. And for crystal agglomeration effect, the A50 
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parameter was introduced to represent the combined effect of material strength, point of 

contact between two crystals and vessel geometry.30 Details of the crystallization mechanisms 

and kinetic models selected in gCRYSTAL are summarised in Table 3. Further information 

about the model equations could be found in the help documentation of the gCRYSTAL 

software and the references therein. 

 After the model development for batch cooling crystallization, four batches of unseeded 

cooling crystallization experiments listed in Table 2 were imported into the gCRYSTAL 

folder of “Experiments>Performed”, in which in situ real time measurements of GLY 

concentration, temperature, and crystal size distribution measured at the batch end were saved. 

“Perfect control” was chosen in the gCRYSTAL temperature controller so that the actual 

temperature profiles measured in the batch experiments could be imported as set points and 

were exactly tracked in the parameter estimation. Upon the successful inputs of the batch 

experimental data, a group of kinetic parameters listed in the Table 3 could be estimated 

using the “Parameter Estimations” tool in the software. Multiple tries of initial guesses were 

usually necessary to obtain a good agreement between model predictions and experimental 

measurements. In some cases, it is critical to re-examine the selected crystallization 

mechanisms by referring to the experimental observations, e.g., the effect of impeller stirring 

speed on nucleation by FBRM total counts, crystal agglomeration by PVM or microscopy 

images. 

The modelling of periodic flow MSMPR crystallization was also implemented in 

gCRYSTAL, using multiple placements of transfer pumps and “Crystallizer MSMPR” stages 

in the flowsheet; a customised control module of “Intelligent Decision Support, IDS” was 

also developed in this study to logically switch on or off the pumps to realise the sequential 

start-up of multi-stage MSMPR crystallizers and to achieve the periodic flow operation. Both 
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single- and three-stage MSMPR crystallization simulations were performed according to the 

actual experimental operating conditions as described in the last section. Their flowsheets are 

illustrated in Figure 3. Note that the same kinetic parameters estimated from the above batch 

cooling crystallization were incorporated here. 

Additionally, unlike the simulation of batch unseeded cooling crystallizations, seeded 

feed suspensions were used in the periodic flow MSMPR crystallization which requires the 

specification of initial seed loading and crystal size distribution in gCRYSTAL. This could be 

done by importing the CSD measurements into the saved file of “Seed CSD.txt” in the 

“Miscellaneous Files” folder. It is worth mentioning that converting the discrete histogram 

Malvern CSD measurements of seed crystals into the volume-based density distribution is 

required in this saved text file. In addition, PI (Proportional and Integral) controllers were 

introduced in the gCRYSTAL temperature controller; their parameters of “Gain” and 

“Integral time” were fine-tuned to agree well with the dynamic response of the temperature 

measured in respective periodic flow experiment. This is because of the dynamic changes in 

temperature were possibly affected by the thermal capacity of cooling jacket of the 

crystallizer, e.g., liquid level, wall fouling, and so on. 

 

Results and discussion 

Residence time distribution in periodic flow MSMPR crystallizer 

       It would be of interest to demonstrate the residence time distribution of periodic flow 

operation in an MSMPR crystallizer and compare to that of a conventionally operated 

continuous flow operation when it is claimed that the periodic flow operation has the 
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capability of extending the mean residence time without broadening the corresponding 

distribution too much. 

      The dynamic residence time distribution model has been applied to simulate the RTDs of 

an MSMPR crystallizer under continuous flow operation, coupled periodic flow operation, 

and decoupled periodic flow operation, with their experimental procedures described in 

section “Material and Experiments” and depicted in Figure 2. Their RTD results are shown 

in Figure 4. When reaches a state of controlled operation, it is found that the coupled 

periodic flow operation approximately doubled the mean residence time τ, from 9.17 min 

under continuous flow operation to a time-averaged of 19.96 min, but with a much more 

broaden residence time distributions, i.e., distribution standard deviation σ changed from 9.50 

min to 19.91 min. However, if one reduces the pumping flow rates for feeding and 

withdrawing of a continuous flow MSMPR crystallizer and thus doubles the mean residence 

time to 18.50 min, the corresponding standard deviation would also rise up to 18.81 min. On 

the other hand, if one compares from the coefficient of variation of their residence time 

distributions, c.v. = σ / τ, the c.v. for continuous flow operations are 9.50/9.17 = 1.04, or 

18.81/18.50 = 1.02; while the c.v. for coupled periodic flow operation is averaged at 

19.91/19.96 = 1.00. In this respect, the coupled periodic flow operation did extend the 

residence time but without broadening its distribution too much or out of expectation. 

       When it comes to the decoupled periodic flow operation, the time-averaged mean 

residence time was increased to 35.05 min with a standard deviation of about 28.15 min and a 

c.v. of around 0.8031. This was because of the decoupled pumping for feeding and 

withdrawing in such to minimise the possibly direct washing-out of the fresh feeding 

suspension. However, the productivity of a decoupled periodic operation would suffer a lot as 

the interruption to withdrawing was prolonged again and may merely show marginal 

advantages when compared to the batch operation in the aspect of productivity. Further, a 
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very long time to a state of controlled operation was required during the start-up phase, e.g. 

looking at the RTD standard deviation in Figure 4. It should be pointed out that here only 

half of the slurry in the crystallizer was withdrawn and refilled in the decoupled periodic flow 

operation, however, if larger volume portion was involved, shorter residence time and 

narrower distribution would be observed with its limit approaching to a batch operation; 

while less volume would result in longer residence time and broader distribution. In practise, 

this should be designed and optimised with profound process understanding.  

      Hence, systematic study and optimisation of the effect of residence time distribution on 

crystal size distribution seem interesting and deserve more investigation effort. Future work 

will try to optimise the periodic flow operation for direct design and tailor of a residence time 

distribution in order to achieve on-spec critical product attributes. 

Kinetic parameter estimation from batch experiments 

      The four batches of unseeded cooling crystallization in Table 2, spanning a range of 

initial concentrations with different cooling rates, were used to infer the major crystallization 

kinetics. Since no significant crystal agglomerates were observed by PVM or microscopic 

images for those unseeded batch experiments, as also shown in the microscopic insets of 

Figure 5; the agglomeration kinetics by “Mumtaz” in Table 3 was inactivated in the 

simulation and hence was not included in the parameter estimation at this stage.  

      The final results of parameter estimation are shown in Figure 5 and Table 4. Fouling of 

the Raman probe may occur due to the long operating time of more than 4 hours in BG-C3, 

potentially resulting in large uncertainties in the concentration measurement in the later 

course. Furthermore, in BG-C4, the concentration measurement in the later phase was 

obviously below the solubility limit. It should be pointed out that the solubility limit was 

calculated from the measured temperature profile in the crystallization experiment. Beside the 
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PAT calibration errors at the low temperature, any uncertainties in the temperature control 

and measurement would result in this kind of deviation. For example, in BG-C4, at the time 

of about 0.75 hour, there was an unexpected increase in temperature during a cooling 

crystallization experiment. In BG-C1 and BG-C2 batch experiments, concentration 

measurement profiles were also slightly below the solubility limit at the tail part. While in 

BG-C4, nearly half of the concentration measurement trajectory was below the solubility 

limit. However, the gCRYSTAL simulations were only able to push the predicted 

concentration profile close to their respective solubility limit, hence the later phase of BG-C4 

would lead to a large bias in the objective function for kinetic parameter estimation and may 

adversely affect the estimation result. Hence, only the first half of BG-C4 was used for 

parameter estimation. On the whole, reasonably good agreements are obtained between the 

measured and the predicted data for the solute concentration and crystal size distribution 

(measured at the end of BG-C1 & C2). Uncertainties in the crystal size distribution may 

relate to the non-spherical and non-uniform crystal shape for the laser diffraction 

measurement and the use of single characteristic size for the one-dimensional population 

balance model in gCRYSTAL 4.0.  

       It is interesting to note the major peak in the final product crystal size distribution of BG-

C1 due to the mild primary nucleation when the GLY concentration hit the metastable zone 

boundary with moderate relative supersaturation at 0.25; while the minor peak in the small 

crystal size range was attributed to the secondary nucleation by crystal-impeller collision, 

which occurred under low supersaturation and the existence of large crystals, as observed in 

Figure 5 microscopic insect for BG-C1. To the contrary, the BG-C2 had triggered more 

intensive primary nucleation and faster crystal growth rate due to higher relative 

supersaturation at 0.55 (see the steep drop in concentration), which resulted into broad crystal 

size distribution. 
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Model validation by periodic flow MSMPR crystallizations 

      Validation of the above crystallization mechanisms and kinetic parameters estimated from 

batch experiments were considered using periodic flow crystallization experiments conducted 

in either single- or cascaded three-stage MSMPR crystallizers, as described in the “Materials 

and Experiments” section. Two ground and sieved crystal seeds were used for each periodic 

flow crystallization experiments, viz., narrow fine seed crystals (mean size ≤ 75 µm) and 

bimodal coarse seed crystals (mean size 75 ~ 125 µm). For example, the two coupled periodic 

flow single-stage MSMPR crystallization experiments were: PSS1 (seeded with narrow fine 

crystals) and PSS2 (seeded with bimodal coarse crystals).  

       In an unseeded batch cooling crystallization, the nuclei were generated in majority by 

primary nucleation and were well dispersed in the slurry by stirring; in contrast, for the 

seeded MSMPR crystallizations in this study some were found with significant numbers of 

agglomerated crystals as observed using the PVM and microscopic images. This may be 

partly because of the ground and sieved seed crystals which were initially found to be 

agglomerated. The imperfect and rough surface of the seed crystals (reduced in size by 

grinding) may provide a low energy barrier for surface nucleation and bridging, leading to 

agglomerated crystals. For example, the initial seed and final crystals of PSS1 are illustrated 

in Figure 6. Nevertheless, more research efforts are needed in future studies. 

       Herein, a shortcut to take into account the agglomeration effect would be by considering 

the agglomeration kinetics of “Mumtaz kinetics” when agglomeration effect was observed in 

the MSMPR crystallization. In this regard, the agglomeration parameter (A50) was fine-tuned 
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in the simulation of PSS1 to fit the agglomerated CSD measurement while using the 

crystallization kinetic parameters listed in Table 4. A value of 60 ×10-3 N/m for A50 would 

result in good agreements both in GLY concentration and CSD, as shown in Figure 7 for 

PSS1. 

    Furthermore, another independent verification of all the kinetic parameters obtained so far 

was demonstrated by experiment PSS2 which was also affected by the agglomeration, as also 

shown in Figure 7. Even though larger sieved seed crystals with bimodal CSD were used in 

PSS2, the model predictions agreed relatively well with the experimental CSD measurements, 

which further confirms the predictive capability of the developed crystallization mechanism 

and kinetics. 

       Validations by coupled periodic flow cascaded three-stage MSMPR crystallization 

experiments, i.e., PCS1 (seeded with narrow fine crystals) and PCS2 (seeded with bimodal 

coarse crystals), are shown in Figures 8 to 10, where only solute concentration in the third 

crystallizer (MSMPR3) was measured, and three slurry samples taken at the end of the 

holding period for each crystallizer vessel were analysed by laser diffraction method.  

      It should be pointed out that, in a continuous flow MSMPR crystallization, it is not an 

issue when to take the slurry samples for off-line crystal size distribution measurement, so 

long as the system reaches its steady state. However, in a periodic flow operation, a state of 

controlled operation is achieved, viz., the system variables continuously varying in a limited 

range. Hence, in order to achieve better matches between predicted and measured data for 

crystal size distribution, the slurry samples should be taken with special care. As the two 

periods of holding and pumping are alternatively applied to the feeding and withdrawing 

pumps during operation; it is better, for cascaded crystallizer stages, to take the slurry 

samples when the crystallizer reaches the end point of the holding period, right before the 
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pumping period, and in sequence of the last stage to the first stage. In such a way, the 

crystallizer is most likely to achieve the best mixing and also avoid the experimental 

perturbations in macro-mixing condition because of feeding, withdrawing, or sampling flows. 

Furthermore, taking the samples from the vessel bottom is faster than taking the samples 

from the discharge flow pump. The proposed sampling procedure has proved to be effective, 

with better matches between model prediction and experimental measurement.21  

       Despite uncertainties in the sampling and mixing conditions and the fact that 

crystallization kinetic parameters were previously estimated from batch cooling 

crystallization experiments without further tuning or re-estimating here, the proposed model 

predicted the solute concentration and crystal size distribution mostly well, except that the 

sample 3-3 in Figure 10 for PCS2 experiment. This may result from the too large needle 

shape crystals with varying aspect ratio, which will be further discussed in the following 

“Uncertainty Analyses and Summary” subsection.    

         In case of the model validation by decoupled periodic flow crystallization, a single-

stage MSMPR crystallization was taken into account, i.e., DPSS (seeded with bimodal coarse 

crystals). The model predictions and their comparisons to the experimental measurements in 

solute concentration and crystal size distribution are illustrated in Figures 11 and 12, where 

good agreements are also obtained, except for the sample 1-3. As mentioned above, this may 

be due to the existence of very large needle shape crystals with varying aspect ratio. As also 

shown in Figure 4 for the residence time distribution of decoupled periodic flow 

crystallization, the process would take nearly 4 hours to reach a state of controlled operation. 

Interestingly, in Figure 12, the three samples took at 0.36, 2.00, 2.70 hrs showed the gradual 

increasing in the measured mean crystal size (357.8 µm, 601.8 µm, 683.9 µm, respectively) 

and broadening in its crystal size distribution, consistent with the increasing values of mean 

residence time and standard deviation in Figure 4. 
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        Furthermore, it is also interesting to compare the periodic flow operation to the 

continuous flow operation using MSMPR crystallizers. For example, the comparison of final 

crystal size distributions by Malvern sizer or by model prediction in cascaded three-stage 

MSMPR crystallizers using coarse seed crystals are shown in Figure 13. Since the mean 

residence time had been doubled from 9.36 × 3 = 28.08 min to 20.00 × 3 = 60.00 min by 

periodic flow operation, as discussed in the “Material and Experiments” section, the 

experimentally measured volume-based mean particle size D43, exp increased from 342.16 µm 

to 696.76 µm, while the corresponding predicted value D43, pred showed an increase from 

184.38 µm to 407.64 µm. Though the periodic flow operation has shown the benefits over the 

continuous flow operation, experimentally and in simulation, the large mismatch in CSD 

between the measurement and model prediction for the continuous flow crystallization is 

impressive. Beside the effect of needle shape crystals as mentioned for the mismatch for 

periodic flow operation, the crystallization kinetics estimated from the batch crystallization 

experiments in this study may not be appropriate for a continuous flow crystallization 

experiment, as the mixing conditions are so different and may have played a critical role in 

the kinetic parameter estimation. The applicability of this crystallization kinetics to the 

periodic flow operation may be due to the fact that this is a hybrid operation of batch and 

continuous operations.  

Uncertainty analyses and summary 

        It has long been a concern with laser diffraction method for crystal size distribution 

measurement as usually the mismatches between the experimental measurements and model 

predictions are impressive (Ref. 31 and the references therein). Even nice agreements in the 

graphics for CSD measurements were mostly obtained, the volume-based mean particle size 

D43 in Table 5, summarising all the experiments discussed in this study, shows significant 
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differences between D43, exp and D43, pred for some of the cases. However, in order to 

objectively reveal the model accuracy, the relative errors were suggested and calculated as:    

𝑅𝑅𝑅𝑅𝑅𝑅. 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝐷𝐷43,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝐷𝐷43,𝑝𝑝𝑒𝑒𝑝𝑝

𝐷𝐷43,𝑝𝑝𝑒𝑒𝑝𝑝
× 100% (6) 

Note here that the experimental CSD measurements were provided in logarithmic scale and 

the same logarithmic scale was also used in the gCRYSTAL simulation, in which the data 

points are evenly placed along the logarithmic crystal size range. Therefore, during the 

parameter estimation, the predicted CSD curves are skewed due to the more measurement 

points in the small crystal size range than the median and large crystal size range. And it is 

the median size range where the desired D43 is located. Minor mismatches in this range in the 

logarithmic scale will lead to large deviation in the linear crystal size scale. Therefore, due to 

the skewing effect, the suggested relative error in Eq. (6) may not provide an absolutely 

reasonable and fair metric for evaluating the model prediction accuracy in each crystallization 

experiment, provided the CSD measurement used in this work.  

     Nevertheless, it is also worth pointing out that the relative error shows an increasing trend 

in experiments PCS1, PCS2, and DPSS when the crystals grow into large size, which results 

into obvious mismatch in the mean crystal size D43 or CSD in sample 3-3 in Figure 10 or in 

sample 1-3 in Figure 12. One of the possible reasons argued was that the GLY crystals 

shows a needle-shape morphology and with varying aspect ratios, as illustrated by the PVM 

images taken for PCS2 experiment in Figure 14. The adverse effect of varying aspect ratio in 

CSD measurements can be significant when the particles are large enough, which explains 

the increasing trend in relative prediction errors. In the future work, a multiple dimensional 

population balance model would be necessary to reduce the prediction error and control the 

crystal shape.32,33,34 Correspondingly, in-situ PVM images providing the crystal shape and 

size measurements are also highly demanded.35    
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     To sum up accordingly, the estimated crystallization mechanism and kinetics from batch 

cooling crystallization experiments have been shown with good predictive capability either in 

coupled periodic flow crystallization in single- / three-stage MSMPR crystallizers or in 

decoupled periodic flow crystallization in a single-stage crystallizer, which proves its further 

implementation in process design, optimisation, and control.36,37 

 

Conclusions 

       The novel periodic flow operation was demonstrated from the perspective of residence 

time distribution and compared to that of the conventional continuous flow operation. The 

merit of extended residence time without over broadening its distribution by periodic flow 

operation has made it attractive for crystallization system when the mean residence time is an 

important design variable. Mathematical modelling and simulation of periodic flow 

crystallization processes using single and multiple MSMPR stages were summarised, wherein 

crystallization mechanisms and kinetic parameters for glycine and water system were 

estimated from unseeded batch cooling crystallization experiments and verified with periodic 

flow single-/three-stage MSMPR crystallizations. Reasonably good agreements were 

obtained between the experimental measurements and model predictions with model 

uncertainties analysed and future work suggested. Moreover, advantages of the periodic flow 

crystallization were proved through experiments and simulations.  
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Figure captions 

Figure 1 Block diagrams of the periodic flow MSMPR crystallization experiments: single-

stage crystallization (top); cascaded three-stage crystallizations. 

Figure 2 Schemes of the periodic flow MSMPR crystallization experiments: (a) coupled 

periodic operation; (b) decoupled periodic operation. 

Figure 3 Flowsheet of the periodic flow crystallization experiments: single-stage MSMPR 

crystallizer (top); cascaded three-stage MSMPR crystallizers. 

Figure 4 Residence time distributions of an MSMPR crystallizer under continuous flow 

operation (top three), coupled periodic flow operation (centre three), and decoupled 

periodic flow operation (bottom three) (The bold solid lines on the right half 

indicate when the withdrawing pumps are switched on). 

Figure 5  Results of kinetic parameter estimation using unseeded batch cooling 

crystallizations.  

Figure 6 Agglomerated initial fine seed crystals and final crystals from PSS1 experiment 

observed in microscopy. 

Figure 7 Comparisons of predicted and measured data for period flow single-stage MSMPR 

crystallizations (CSD measurements were taken at the start of pumping period after 

reaching a state of controlled operation). 

Figure 8 Comparisons of predicted and measured data for solute concentration in the third 

crystallizer (MSMPR 3) of the periodic flow cascaded three-stage MSMPR 

crystallizations. 
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Figure 9   Comparisons of crystal size distributions between predictions and measurements 

in the three crystallizers for PCS1 experiment (solid line: predicted; dash line: 

measured). 

Figure 10 Comparisons of crystal size distributions between predictions and measurements 

in the three crystallizers for PCS2 experiment (solid line: predicted; dash line: 

measured). 

Figure 11 Comparisons of concentration between predictions and measurements for DPSS 

experiment. 

Figure 12 Comparisons of crystal size distributions between predictions and measurements 

for DPSS experiment (solid line: predicted; dash line: measured). 

Figure 13 Comparisons of crystal size distribution measurements between continuous flow 

operation and periodic flow operation with cascaded three-stage MSMPR 

crystallizers. 

Figure 14 PVM images taken for the last stage crystallizer MSMPR3 in PPS2 experiment. 
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Table lists 

Table 1 Comparison of batch, continuous, and periodic operations of stirred tank crystallizer. 

Table 2 Summary of four batches of unseeded cooling crystallization. 

Table 3 Summary of the crystallization mechanisms and kinetic models. 

Table 4 Results of kinetics parameter estimation. 

Table 5 Comparisons of volume-based mean particle size D43. 
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Table 1 Comparison of batch, continuous, and periodic operations of stirred tank crystallizer. 

Stirred tank operation System states Remarks 

  

 Perfect control of residence  
time 

  Batch to batch variations 
  Low productivity 
  Labour and cost intensive 

  

 Continuous steady-state 
operation 

  High productivity 
  Short mean residence time 
  Broad residence time      

distribution 
  Transfer line blockage  

  

  Controlled state of operation 
(CSO) 
  Hybrid of batch and continuous 
  Extending mean residence time 
  Broad residence time  

distribution 
  Reduced transfer line blockage 

 

Table 2 Summary of four batches of unseeded cooling crystallization. 

Exp. 
No. 

Initial Conc. 
C0 (g/g) 

Sat. Temp. 
Tsat (oC) 

Cooling rate 
(oC/min) 

Initial 
Temp (oC) 

Final 
Temp. (oC) 

Batch Time 
(min) 

BG-C1 0.4120 55.0 0.70 70.0   6.0 107.0 
BG-C2 0.3248 40.0 0.65 50.0   6.0   90.0 
BG-C3 0.3246 40.0 0.10 50.0 25.0 250.0 
BG-C4 0.2801 30.0 0.55 40.0   6.0   93.0 
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Table 3   Summary of the crystallization mechanisms and kinetic models 

Mechanism Kinetics Options Parameters 

Primary 
nucleation 

Customized power law kinetics 

𝐽𝐽𝑝𝑝𝑝𝑝𝑖𝑖𝑚𝑚 = 𝑘𝑘𝑛𝑛𝜎𝜎𝑛𝑛1exp (
−𝐸𝐸𝐴𝐴,𝑛𝑛

𝑅𝑅𝑅𝑅
)𝐶𝐶𝑛𝑛2  

 

Relative 
supersaturation 

𝜎𝜎 = (𝐶𝐶 − 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠) 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠⁄  

• Rate constant 𝑘𝑘𝑛𝑛 
• Supersaturation order 𝑛𝑛1  
• Activation energy 𝐸𝐸𝐴𝐴,𝑛𝑛 
• Order with respect to solute 

concentration 𝑛𝑛2 

Secondary 
nucleation 

Evans kinetics 
𝐽𝐽sec _𝑐𝑐𝑖𝑖

= k𝑛𝑛_𝑐𝑐𝑖𝑖𝜎𝜎𝑛𝑛𝑐𝑐𝑐𝑐
𝑁𝑁𝑄𝑄
𝑁𝑁𝑃𝑃

𝑘𝑘𝑣𝑣𝜌𝜌𝑐𝑐𝜀𝜀 � 𝑛𝑛𝐿𝐿3𝑑𝑑𝐿𝐿
∞

𝐿𝐿min_𝑐𝑐𝑐𝑐

 

Collision type: 
Crystal-Impeller (CI) 

• Rate constant 𝑘𝑘𝑛𝑛_𝑐𝑐𝑖𝑖 
• Impeller flow number 𝑁𝑁𝑄𝑄 
• Impeller power number 𝑁𝑁𝑃𝑃 
• Volume shape factor 𝑘𝑘𝑣𝑣 
• Crystal density 𝜌𝜌𝑐𝑐 
• Energy dissipation energy 𝜀𝜀 
• Size above which crystals 

undergo attrition 𝐿𝐿min_𝑐𝑐𝑖𝑖 
• Crystal number density 𝑛𝑛 
• Order with respect to 

supersaturation 𝑛𝑛𝑐𝑐𝑖𝑖 

Crystal growth 
Power law kinetics 

𝐺𝐺 = 𝑘𝑘𝑔𝑔𝑅𝑅𝑒𝑒𝑒𝑒 �
−𝐸𝐸𝐴𝐴,𝑔𝑔

𝑅𝑅𝑅𝑅
� 𝜎𝜎𝑔𝑔 

Relative 
supersaturation  

• Growth rate constant 𝑘𝑘𝑔𝑔 
• Order with respect to 

supersaturation 𝑔𝑔 
• Activation energy 𝐸𝐸𝐴𝐴,𝑔𝑔 

Agglomeration Mumtaz kinetics 
𝛽𝛽𝑠𝑠𝑔𝑔𝑔𝑔 = 𝜓𝜓(𝐴𝐴50)β𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

- 

• Agglomeration efficiency 𝜓𝜓  
• Lumped agglomeration 

parameter (A50) 
• Collision rate constant 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

 

Table 4 Results of kinetics parameter estimation 

Kinetics Parameter Estimate Unit 

Primary nucleation: 
Customized power law 

kinetics 

Rate constant 𝑘𝑘𝑛𝑛 1673.83 ± 22.82 LOG(#/s) 
Supersaturation order 𝑛𝑛1         4.23  ± 0.013 - 
Activation energy 𝐸𝐸𝐴𝐴,𝑛𝑛 1284.64 ± 147.4 J/mol 
Order with respect to solute 
concentration 𝑛𝑛2 

       3.41  ± 0.013 - 

Secondary nucleation: 
Evans kinetics 

Rate constant 𝑘𝑘𝑛𝑛,𝑐𝑐𝑖𝑖      16.40  ±  0.009 LOG(#/s) 
Size above which crystals 
undergo attrition 𝐿𝐿𝑚𝑚𝑖𝑖𝑛𝑛,𝑐𝑐𝑖𝑖  

  798.35  ± 1.174 µm 

Order with respect to 
supersaturation 𝑛𝑛𝑐𝑐𝑖𝑖 

             1.00* - 

Crystal growth: 
Power law kinetics 

Growth rate constant 𝑘𝑘𝑔𝑔  1.49×10-5 ± 3.52×10-8 m/s 
Order with respect to 
supersaturation 𝑔𝑔        1.71 ± 0.0010 - 

Activation energy 𝐸𝐸𝐴𝐴,𝑔𝑔             0.00* J/mol 
Agglomeration: 
Mumtaz kinetics  

Agglomeration parameter 
(A50) 

         60.00×10-3 N/m 

   *   The final estimates hit the lower bound.          
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Table 5 Comparisons of volume-based mean particle size D43 

Experiments D43, exp (µm) D43, pred (µm) Rel. error 

Batch  
  

Sample at BG-C1 end 498.99 454.62  -1.50% 
Sample at BG-C2 end 447.86 360.00 -3.58% 
Sample at BG-C  end - 321.99       - 
Sample at BG-C4 end - 319.27       - 

PSS1 Controlled state average 167.48 183.21 1.75% 
PSS2 Controlled state average 287.64 216.60 -5.01% 

PCS1 
Sample 3-1 238.10 226.67 -0.90% 
Sample 3-2 278.70 264.55 -0.93% 
Sample 3-3 348.30 267.87 -4.49% 

PCS2 
Sample 3-1 364.41 362.34 -0.10% 
Sample 3-2 519.54 409.39 -3.81% 
Sample 3-3 696.76 407.64 -8.19% 

DPSS 
Sample 1-1 357.83 362.89  0.24% 
Sample 1-2 601.78 431.65 -5.18% 
Sample 1-3 683.88 418.52  -7.52% 

CCS Steady-state 342.16 184.38 -10.60% 
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Figure 1   Block diagrams of the periodic flow MSMPR crystallization experiments: single-

stage crystallization (top); cascaded three-stage crystallizations. 

 

 

Figure 2   Schemes of the periodic flow MSMPR crystallization experiments: (a) coupled 

periodic operation; (b) decoupled periodic operation. 
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Figure 3 Flowsheet of the periodic flow crystallization experiments: single-stage 

MSMPR crystallizer (top); cascaded three-stage MSMPR crystallizers. 
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Figure 4 Residence time distributions of an MSMPR crystallizer under continuous flow 

operation (top three), coupled periodic flow operation (centre three), and decoupled periodic 

flow operation (bottom three) (The bold solid lines on the right half indicate when the 

withdrawing pumps are switched on). 
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Figure 5 Results of kinetic parameter estimation using unseeded batch cooling 

crystallizations.  
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Figure 6 Agglomerated initial fine seed crystals and final crystals from PSS1 experiment 

observed in microscopy. 

 
Figure 7 Comparisons of predicted and measured data for period flow single-stage MSMPR 

crystallizations (CSD measurements were taken at the start of pumping period after reaching 

a state of controlled operation). 
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Figure 8 Comparisons of predicted and measured data for solute concentration in the third 

crystallizer (MSMPR 3) of the periodic flow cascaded three-stage MSMPR crystallizations. 

 

 

 

Figure 9   Comparisons of crystal size distributions between predictions and measurements 

in the three crystallizers for PCS1 experiment (solid line: predicted; dash line: measured). 
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Figure 10   Comparisons of crystal size distributions between predictions and measurements 

in the three crystallizers for PCS2 experiment (solid line: predicted; dash line: measured). 

         

 

Figure 11 Comparisons of concentration between predictions and measurements for DPSS 

experiment. 
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Figure 12 Comparisons of crystal size distributions between predictions and measurements 

for DPSS experiment (solid line: predicted; dash line: measured). 

 

Figure 13 Comparisons of crystal size distribution measurements between continuous flow 

operation and periodic flow operation with cascaded three-stage MSMPR crystallizers.  
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Figure 14 PVM images taken for the last stage crystallizer MSMPR3 in PPS2 experiment.       

 

 


