45 research outputs found

    Probabilistic study of the speed of approach to equilibrium for an inelastic Kac model

    Full text link
    This paper deals with a one--dimensional model for granular materials, which boils down to an inelastic version of the Kac kinetic equation, with inelasticity parameter p>0p>0. In particular, the paper provides bounds for certain distances -- such as specific weighted χ\chi--distances and the Kolmogorov distance -- between the solution of that equation and the limit. It is assumed that the even part of the initial datum (which determines the asymptotic properties of the solution) belongs to the domain of normal attraction of a symmetric stable distribution with characteristic exponent \a=2/(1+p). With such initial data, it turns out that the limit exists and is just the aforementioned stable distribution. A necessary condition for the relaxation to equilibrium is also proved. Some bounds are obtained without introducing any extra--condition. Sharper bounds, of an exponential type, are exhibited in the presence of additional assumptions concerning either the behaviour, near to the origin, of the initial characteristic function, or the behaviour, at infinity, of the initial probability distribution function

    Models for Heavy-tailed Asset Returns

    Get PDF
    Many of the concepts in theoretical and empirical finance developed over the past decades – including the classical portfolio theory, the Black-Scholes-Merton option pricing model or the RiskMetrics variance-covariance approach to VaR – rest upon the assumption that asset returns follow a normal distribution. But this assumption is not justified by empirical data! Rather, the empirical observations exhibit excess kurtosis, more colloquially known as fat tails or heavy tails. This chapter is intended as a guide to heavy-tailed models. We first describe the historically oldest heavy-tailed model – the stable laws. Next, we briefly characterize their recent lighter-tailed generalizations, the so-called truncated and tempered stable distributions. Then we study the class of generalized hyperbolic laws, which – like tempered stable distributions – can be classified somewhere between infinite variance stable laws and the Gaussian distribution. Finally, we provide numerical examples
    corecore