33 research outputs found

    Finite-size criticality in fully connected spin models on superconducting quantum hardware

    Full text link
    The emergence of a collective behavior in a many-body system is responsible of the quantum criticality separating different phases of matter. Interacting spin systems in a magnetic field offer a tantalizing opportunity to test different approaches to study quantum phase transitions. In this work, we exploit the new resources offered by quantum algorithms to detect the quantum critical behaviour of fully connected spin−1/2-1/2 models. We define a suitable Hamiltonian depending on an internal anisotropy parameter γ,\gamma, that allows us to examine three paradigmatic examples of spin models, whose lattice is a fully connected graph. We propose a method based on variational algorithms run on superconducting transmon qubits to detect the critical behavior for systems of finite size. We evaluate the energy gap between the first excited state and the ground state, the magnetization along the easy-axis of the system, and the spin-spin correlations. We finally report a discussion about the feasibility of scaling such approach on a real quantum device for a system having a dimension such that classical simulations start requiring significant resources.Comment: 11 pages, 9 figures. Comments are welcom

    Common variants at 21q22.3 locus influence MX1 and TMPRSS2 gene expression and susceptibility to severe COVID-19

    Get PDF
    The established risk factors of coronavirus disease 2019 (COVID-19) are advanced age, male sex and comorbidities, but they do not fully explain the wide spectrum of disease manifestations. Genetic factors implicated in the host antiviral response provide for novel insights into its pathogenesis. We performed an in-depth genetic analysis of chromosome 21 exploiting the genome-wide association study data, including 6,406 individuals hospitalized for COVID-19 and 902,088 controls with European genetic ancestry from the COVID-19 Host Genetics Initiative. We found that five single nucleotide polymorphisms within TMPRSS2 and near MX1 gene show associations with severe COVID-19. The minor alleles of the five SNPs correlated with a reduced risk of developing severe COVID-19 and high level of MX1 expression in blood. Our findings demonstrate that host genetic factors can influence the different clinical presentations of COVID-19 and that MX1 could be a potential therapeutic target

    Laboratory measurements of electrical conductivities of hydrous and dry Mt. Vesuvius melts under pressure

    No full text
    International audienceQuantitative interpretation of MT anomalies in volcanic regions requires laboratory measurements of electrical conductivities of natural magma compositions. The electrical conductivities of three lava compositions from Mt. Vesuvius (Italy) have been measured using an impedance spectrometer. Experiments were conducted on both glasses and melts between 400 and 1300°C, and both at ambient pressure in air and at high pressures (up to 400 MPa). Both dry and hydrous (up to 5.6 wt% H2O) melt compositions were investigated. A change of the conduction mechanism corresponding to the glass transition was systematically observed. The conductivity data were fitted by sample-specific Arrhenius laws on either side of Tg. The electrical conductivity increases with temperature and is higher in the order tephrite, phonotephrite to phonolite. For the three compositions investigated, increasing pressure decreases the conductivity, although the effect of pressure is relatively small. The three compositions investigated have similar activation volumes (ΔV=16-24 cm3/mol). Increasing the water content of the melt increases the conductivity. Comparison of activation energies (Ea) from conductivity and sodium diffusion, and use of the Nernst-Einstein relation allow sodium to be identified as the main charge carrier in our melts and presumably also in the corresponding glasses. Our data and those of previous studies highlight the correlation between the Arrhenius parameters Ea and σ0. A semi-empirical method allowing the determination of the electrical conductivity of natural magmatic liquids is proposed, in which the activation energy is modelled on the basis of the Anderson-Stuart model, σ0 being obtained from the compensation law and ΔV fitted from our experimental data. The model enables the electrical conductivity to be calculated for the entire range of melt compositions at Mt. Vesuvius and also predicts satisfactorily the electrical response of other melt compositions. Electrical conductivity data for Mt. Vesuvius melts and magmas are slightly lower than the electrical anomaly revealed by MT studies

    In silico analysis and theratyping of an ultra-rare CFTR genotype (W57G/A234D) in primary human rectal and nasal epithelial cells

    Get PDF
    Mutation targeted therapy in cystic fibrosis (CF) is still not eligible for all CF subjects, especially for cases carrying rare variants such as the CFTR genotype W57G/A234D (c.169T>G/c.701C>A). We performed in silico analysis of the effects of these variants on protein stability, which we functionally characterized using colonoids and reprogrammed nasal epithelial cells. The effect of mutations on cystic fibrosis transmembrane conductance regulator (CFTR) protein was analyzed by western blotting, forskolin-induced swelling (FIS), and Ussing chamber analysis. We detected a residual CFTR function that increases following treatment with the CFTR modulators VX661±VX445±VX770, correlates among models, and is associated with increased CFTR protein levels following treatment with CFTR correctors. In vivo treatment with VX770 reduced sweat chloride concentration to non-CF levels, increased the number of CFTR-dependent sweat droplets, and induced a 6% absolute increase in predicted FEV1% after 27 weeks of treatment indicating the relevance of theratyping with patient-derived cells in CF

    Tilting angle and water slippage over hydrophobic coatings

    No full text
    Hydrophobic coatings, such as octadecyltrichlorosilane or n-alkyl monolayers, enhance the slippage of liquids on solid walls. For a given alkyl chain length, the main structural parameter for homogeneous coatings is the tilt angle between coating molecules and the surface normal. In this paper, ab initio calculations are used to calculate the equilibrium configuration of coating molecules, showing that the tilt angle easily changes from 0 degrees to 30 degrees depending on the specific head group binding the solid substrate. These values are used to set up classical molecular dynamics of water slippage over the coatings using different water models (Transferable Intermolecular Potential 3 point (TIP3P), Transferable Intermolecular Potential 4 point (TIP4P) and TIP4P/2005). The slippage is found to be robust with respect to the coating tilting, while a slight dependence on the water model is observed

    Glucocorticoid-Induced Leucine Zipper Inhibits the Raf-Extracellular Signal-Regulated Kinase Pathway by Binding to Raf-1

    No full text
    Glucocorticoid-induced leucine zipper (GILZ) is a leucine zipper protein, whose expression is augmented by dexamethasone (DEX) treatment and downregulated by T-cell receptor (TCR) triggering. Stable expression of GILZ in T cells mimics some of the effects of glucocorticoid hormones (GCH) in GCH-mediated immunosuppressive and anti-inflammatory activity. In fact, GILZ overexpression inhibits TCR-activated NF-ÎșB nuclear translocation, interleukin-2 production, FasL upregulation, and the consequent activation-induced apoptosis. We have investigated the molecular mechanism underlying GILZ-mediated regulation of T-cell activation by analyzing the effects of GILZ on the activity of mitogen-activated protein kinase (MAPK) family members, including Raf, MAPK/extracellular signal-regulated kinase (ERK) 1/2 (MEK-1/2), ERK-1/2, and c-Jun NH(2)-terminal protein kinase (JNK). Our results indicate that GILZ inhibited Raf-1 phosphorylation, which resulted in the suppression of both MEK/ERK-1/2 phosphorylation and AP-1-dependent transcription. We demonstrate that GILZ interacts in vitro and in vivo with endogenous Raf-1 and that Raf-1 coimmunoprecipitated with GILZ in murine thymocytes treated with DEX. Mapping of the binding domains and experiments with GILZ mutants showed that GILZ binds the region of Raf interacting with Ras through the NH(2)-terminal region. These data suggest that GILZ contributes, through protein-to-protein interaction with Raf-1 and the consequent inhibition of Raf-MEK-ERK activation, to regulating the MAPK pathway and to providing a further mechanism underlying GCH immunosuppression

    An Open‐Source Earthquake Early Warning Display

    No full text
    corecore