187 research outputs found

    Generation of an induced pluripotent stem cell line (UCSCi001-A) from a patient with early-onset amyotrophic lateral sclerosis carrying a FUS variant.

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting upper and lower motor neurons. We generated patient-derived-induced Pluripotent Stem Cells (iPSCs), from an ALS patient affected by an early-onset and aggressive form of the disease, carrying a missense pathogenic variant in FUS gene. We reprogrammed somatic cells using an established Sendai virus protocol and we obtained clones of iPSC. We confirmed their stemness and further generated embryoid bodies, showing their potential of differentiating in all three germ layers. This iPSC line, carrying a pathogenic FUS variant, is a valuable tool to deeply investigate pathogenic mechanisms leading to ALS

    Generation of an induced pluripotent stem cell line (UCSCi002-A) from a patient with a variant in TARDBP gene associated with familial amyotrophic lateral sclerosis and frontotemporal dementia

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that selectively affects motor neurons. In 20% of cases, ALS appears in comorbidity with frontotemporal dementia (FTD). We generated patient-derived-induced Pluripotent Stem Cells (iPSCs), from an ALS/FTD patient. The patient had a familial form of the disease and a missense variant in TARDBP gene. We used an established protocol based on Sendai virus to reprogram fibroblasts. We confirmed the stemness and the pluripotency of the iPSC clones, thus generating embryoid bodies. We believe that the iPSC line carrying a TARDBP mutation could be a valuable tool to investigate TDP-43 proteinopathy linked to ALS

    Complex Chromosome Rearrangements (CCRs): Description of a new case with 5 breakpoints between chromosome 4 and 8

    Get PDF
    Citogenética y Genética molecularComplex chromosomal rearrangements (CCRs) were first defined by Pai et al. (1980) as "structural chromosomal rearrangements with at least three breakpoints and the exchange of genetic material between two or more chromosomes”. More recently, in 2003, Houge et al. redefined CCRs as "constitutional structural rearrangements involving three or more chromosomes or having more than two breakpoints”, which has become the definition more commonly used nowadays when referring to CCRs. In general, due to the intrinsic complexity involved in their formation, CCRs are rare. However, over the years, CCRs have been classified by various authors taking into account different criteria. Therefore, they may be classified according to their transmission (either “inherited” or “de novo”), the number of breakpoints involved (“four or less” and “more than four”), and their structure, for which three types can be distinguished: a) three-way exchange CCRs, b) exceptional CCRs and c) double two-way exchange CCRs. Usually the CCRs have deletions and duplications associated, which are not easily detected unless high-resolution cytogenetic analysis is applied. However, it is the application of this technique, together with the use of the latest molecular tools, such as array-CGH (array-Comparative Genomic Hybridization), that will allow the proper characterization of the possible rearrangements in each CCR. These new technologies will also reveal the genes that have been deleted or duplicated in the CCRs, so that in some cases it may be possible to postulate the mechanism of formation of the CCR and therefore to know the prognosis and/or evolution of patients with a CCR. This article describes a patient, with growth retardation, developmental delay, nystagmus, microcephaly and micrognathia, in which high-resolution G-banded chromosome analysis together with fluorescence in situ hybridisation (FISH) and molecular techniques revealed the presence of an “exceptional”, de novo CCR, with five breakpoints and two deleted regions, involving chromosomes 4 and 8. In addition, a review of the genes located in the deleted regions and their correlation with the patient’s phenotype will be presented.N

    Pathogenic variants in SOX11 mimicking Pitt-Hopkins syndrome phenotype

    Get PDF
    Pitt-Hopkins syndrome (PTHS) is a rare neurodevelopmental disorder characterised by severe intellectual disability (ID), distinctive facial features and autonomic nervous system dysfunction, caused by TCF4 haploinsufficiency. We clinically diagnosed with PTHS a 14 (6/12)-year-old female, who had a normal status of TCF4. The pathogenic c.667del (p.Asp223MetfsTer45) variant in SOX11 was identified through whole exome sequencing (WES). SOX11 variants were initially reported to cause Coffin-Siris syndrome (CSS), characterised by growth restriction, moderate ID, coarse face, hypertrichosis and hypoplastic nails. However, recent studies have provided evidence that they give rise to a distinct neurodevelopmental disorder. To date, SOX11 variants are associated with a variable phenotype, which has been described to resemble CSS in some cases, but never PTHS. By reviewing both clinically and genetically 32 out of 82 subjects reported in the literature with SOX11 variants, for whom detailed information are provided, we found that 7/32 (22%) had a clinical presentation overlapping PTHS. Furthermore, we made a confirmation that overall SOX11 abnormalities feature a distinctive disorder characterised by severe ID, high incidence of microcephaly and low frequency of congenital malformations. Purpose of the present report is to enhance the role of clinical genetics in assessing the individual diagnosis after WES results

    A deep phenotyping experience: up to date in management and diagnosis of Malan syndrome in a single center surveillance report

    Get PDF
    Background Malan syndrome (MALNS) is a recently described ultrarare syndrome lacking guidelines for diagnosis, management and monitoring of evolutive complications. Less than 90 patients are reported in the literature and limited clinical information are available to assure a proper health surveillance. Results A multidisciplinary team with high expertise in MALNS has been launched at the "Ospedale Pediatrico Bambino Gesu", Rome, Italy. Sixteen Italian MALNS individuals with molecular confirmed clinical diagnosis of MALNS were enrolled in the program. For all patients, 1-year surveillance in a dedicated outpatient Clinic was attained. The expert panel group enrolled 16 patients and performed a deep phenotyping analysis directed to clinically profiling the disorder and performing critical revision of previously reported individuals. Some evolutive complications were also assessed. Previously unappreciated features (e.g., high risk of bone fractures in childhood, neurological/neurovegetative symptoms, noise sensitivity and Chiari malformation type 1) requiring active surveillance were identified. A second case of neoplasm was recorded. No major cardiovascular anomalies were noticed. An accurate clinical description of 9 new MALNS cases was provided. Conclusions Deep phenotyping has provided a more accurate characterization of the main clinical features of MALNS and allows broadening the spectrum of disease. A minimal dataset of clinical evaluations and follow-up timeline has been proposed for proper management of patients affected by this ultrarare disorder

    New ALS-related genes expand the spectrum paradigm of amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS) is characterized by the degeneration of upper and lower motor neurons. Clinical heterogeneity is a well-recognized feature of the disease as age of onset, site of onset and the duration of the disease can vary greatly among patients. A number of genes have been identified and associated to familial and sporadic forms of ALS but the majority of cases remains still unexplained. Recent breakthrough discoveries have demonstrated that clinical manifestations associated with ALS-related genes are not circumscribed to motor neurons involvement. In this view ALS appears to be linked to different conditions over a continuum or spectrum in which overlapping phenotypes may be identified. In this review, we aim to examine the increasing number of spectra, including ALS/Frontotemporal Dementia and ALS/Myopathies spectra. Considering all these neurodegenerative disorders as different phenotypes of the same spectrum can help to identify common pathological pathways and consequently new therapeutic targets in these incurable diseases. This article is protected by copyright. All rights reserved

    LETM1 couples mitochondrial DNA metabolism and nutrient preference

    Get PDF
    The diverse clinical phenotypes of Wolf\u2013Hirschhorn syndrome (WHS) are the result of haploinsufficiency of several genes, one of which, LETM1, encodes a protein of the mitochondrial inner membrane of uncertain function. Here, we show that LETM1 is associated with mitochondrial ribosomes, is required for mitochondrial DNA distribution and expression, and regulates the activity of an ancillary metabolic enzyme, pyruvate dehydrogenase. LETM1 deficiency in WHS alters mitochondrial morphology and DNA organization, as does substituting ketone bodies for glucose in control cells. While this change in nutrient availability leads to the death of fibroblasts with normal amounts of LETM1, WHS-derived fibroblasts survive on ketone bodies, which can be attributed to their reduced dependence on glucose oxidation. Thus, remodeling of mitochondrial nucleoprotein complexes results from the inability of mitochondria to use specific substrates for energy production and is indicative of mitochondrial dysfunction. However, the dysfunction could be mitigated by a modified diet\u2014for WHS, one high in lipids and low in carbohydrates

    The chromosome analysis of the miscarriage tissue. Miscarried embryo/fetal crown rump length (CRL) measurement: A practical use

    Get PDF
    Objective To investigate whether miscarried embryo/fetal crown rump length (CRL) measurement may yield a practical application for predicting a conclusive result at the cytogenetic analysis of miscarriage tissue. Our study might help in improving the cytogenetic method, the results of which may be affected by maternal cell contamination (MCC). In particular, we aimed at establishing whether the miscarried embryo/fetal CRL measurement shows accuracy in predicting the possibility of MCC and the scan cut-off value useful to this purpose and, as a result, suggest a multi-step procedure for the genetic ascertainment. Methods Women experiencing at least two miscarriages of less than 20 weeks size at the Pregnancy Loss Unit at Fondazione Policlinico A. Gemelli underwent a scan before surgery. The CRL value was recorded. After the dilatation and courettage (D&C) procedure, miscarriage tissue was processed through the proposed multi-step procedure before performing oligo-nucleotide- based and SNP (single nucleotide polymorphisms)-based comparative genomic hybridization (CGH+SNP) microarray analysis. Results 63 women and 63 miscarriages met the criteria. By using the Receiving Operator Characteristic (ROC) curves, CRL showed an AUC of 0.816 (95%CI:0.703\ub10.928,p<0.001). A CRL24.5 mm cut-off value showed a higher positive likelihood ratio (5.27) but, conversely, a higher negative likelihood ratio (0.64) in predicting the possibility of MCC. Microarray analysis was successful in the totality of cases in which the embryo/fetal origin of miscarriage tissues was proven

    Identification of the DNA methylation signature of Mowat-Wilson syndrome

    Get PDF
    Mowat-Wilson syndrome (MOWS) is a rare congenital disease caused by haploinsufficiency of ZEB2, encoding a transcription factor required for neurodevelopment. MOWS is characterized by intellectual disability, epilepsy, typical facial phenotype and other anomalies, such as short stature, Hirschsprung disease, brain and heart defects. Despite some recognizable features, MOWS rarity and phenotypic variability may complicate its diagnosis, particularly in the neonatal period. In order to define a novel diagnostic biomarker for MOWS, we determined the genome-wide DNA methylation profile of DNA samples from 29 individuals with confirmed clinical and molecular diagnosis. Through multidimensional scaling and hierarchical clustering analysis, we identified and validated a DNA methylation signature involving 296 differentially methylated probes as part of the broader MOWS DNA methylation profile. The prevalence of hypomethylated CpG sites agrees with the main role of ZEB2 as a transcriptional repressor, while differential methylation within the ZEB2 locus supports the previously proposed autoregulation ability. Correlation studies compared the MOWS cohort with 56 previously described DNA methylation profiles of other neurodevelopmental disorders, further validating the specificity of this biomarker. In conclusion, MOWS DNA methylation signature is highly sensitive and reproducible, providing a useful tool to facilitate diagnosis
    • …
    corecore