146 research outputs found

    Controlling the electronic properties of van der Waals heterostructures by applying electrostatic design

    Get PDF
    Van der Waals heterostructures based on the heteroassembly of 2D materials represent a recently developed class of materials with promising properties especially for optoelectronic applications. The alignment of electronic energy bands between consecutive layers of these heterostructures crucially determines their functionality. In the present paper, relying on dispersion-corrected density-functional theory calculations, we present electrostatic design as a promising tool for manipulating this band alignment. The latter is achieved by inserting a layer of aligned polar molecules between consecutive transition-metal dichalcogenide (TMD) sheets. As a consequence, collective electrostatic effects induce a shift of as much as 0.3 eV in the band edges of successive TMD layers. Building on that, the proposed approach can be used to design electronically more complex systems, like quantum cascades or quantum wells, or to change the type of band lineup between type II and type I

    Sticking with the Pointy End? Molecular Configuration of Chloro Boron-Subphthalocyanine on Cu(111)

    Get PDF
    In this combined low-temperature scanning tunneling microscopy (STM) and density functional theory (DFT) study, we investigate self-assembly of the dipolar nonplanar organic semiconductor chloro boron-subphthalocyanine (ClB-SubPc) on Cu(111). We observe multiple distinct adsorption configurations and demonstrate that these can only be understood by taking surface-catalyzed dechlorination into account. A detailed investigation of possible adsorption configurations and the comparison of experimental and computational STM images demonstrates that the configurations correspond to “Cl-up” molecules with the B–Cl moiety pointing toward the vacuum side of the interface, and dechlorinated molecules. In contrast to the standard interpretation of adsorption of nonplanar molecules in the phthalocyanine family, we find no evidence for “Cl-down” molecules where the B–Cl moiety would be pointing toward the Cu surface. We show computationally that such a configuration is unstable and thus is highly unlikely to occur for ClB-SubPc on Cu(111). Using these assignments, we discuss the different self-assembly motifs in the submonolayer coverage regime. The combination of DFT and STM is essential to gain a full atomistic understanding of the surface–molecule interactions, and our findings imply that phthalocyanines may undergo surface-catalyzed reactions hitherto not considered. Our results also indicate that care has to be taken when analyzing possible adsorption configurations of polar members of the phthalocyanine family, especially when they are adsorbed on comparably reactive surfaces like Cu(111)

    Large scale numerical investigation of excited states in poly(phenylene)

    Full text link
    A density matrix renormalisation group scheme is developed, allowing for the first time essentially exact numerical solutions for the important excited states of a realistic semi-empirical model for oligo-phenylenes. By monitoring the evolution of the energies with chain length and comparing them to the experimental absorption peaks of oligomers and thin films, we assign the four characteristic absorption peaks of phenyl-based polymers. We also determine the position and nature of the nonlinear optical states in this model.Comment: RevTeX, 10 pages, 4 eps figures included using eps

    Holographic two-point functions for 4d log-gravity

    Full text link
    We compute holographic one- and two-point functions of critical higher-curvature gravity in four dimensions. The two most important operators are the stress tensor and its logarithmic partner, sourced by ordinary massless and by logarithmic non-normalisable gravitons, respectively. In addition, the logarithmic gravitons source two ordinary operators, one with spin-one and one with spin-zero. The one-point function of the stress tensor vanishes for all Einstein solutions, but has a non-zero contribution from logarithmic gravitons. The two-point functions of all operators match the expectations from a three-dimensional logarithmic conformal field theory.Comment: 35 pages; v2: typos corrected, added reference; v3: shorter introduction, minor changes in the text in section 3, added reference; published versio

    Short-cut to new anomalies in gravity duals to logarithmic conformal field theories

    Full text link
    Various massive gravity theories in three dimensions are conjecturally dual to logarithmic conformal field theories (LCFTs). We summarise the status of these conjectures. LCFTs are characterised by the values of the central charges and the so-called "new anomalies". We employ a short-cut to calculate these new anomalies in generalised massive gravity and in the recently proposed higher-derivative gravity theories with holographic c-theorem. Both cases permit LCFTs exhibiting intriguing features, like rank three Jordan cells or non-zero central charges. Finally, as an example we discuss in some detail the partially massless version of new massive gravity, a theory with several special properties that we call "partially massless gravity".Comment: 34 pages, 2 figures; v2: added references; v3: Several rewordings in the introduction and section 2, added references. Matches published versio

    Evolution of bisphosphonate-related osteonecrosis of the jaw in patients with multiple myeloma and Waldenstrom's macroglobulinemia: a retrospective multicentric study

    Get PDF
    Bisphosphonates (BPs) are used intravenously to treat cancer-related conditions for the prevention of pathological fractures. Osteonecrosis of the jaw (BRONJ) is a rare complication reported in 4–15% of patients. We studied, retrospectively, 55 patients with multiple myeloma or Waldenstrom's macroglobulinemia followed up from different haematological departments who developed BRONJ. All patients were treated with BPs for bone lesions and/or fractures. The most common trigger for BRONJ was dental alveolar surgery. After a median observation of 26 months, no death caused by BRONJ complication was reported. In all, 51 patients were treated with antibiotic therapy, and in 6 patients, this was performed in association with surgical debridement of necrotic bone, in 16 with hyperbaric O2 therapy/ozonotherapy and curettage and in 12 with sequestrectomy and O2/hyperbaric therapy. Complete response was observed in 20 cases, partial response in 21, unchanged in 9 and worsening in 3. The association of surgical treatment with antibiotic therapy seems to be more effective in eradicating the necrotic bone than antibiotic treatment alone. O2 hyperbaric/ozonotherapy is a very effective treatment. The cumulative dosage of BPs is important for the evolution of BRONJ. Because the most common trigger for BRONJ was dental extractions, all patients, before BP treatment, must achieve an optimal periodontal health

    Energy level alignment at strongly coupled organic metal interfaces

    Get PDF
    Energy-level alignment at organic–metal interfaces plays a crucial role for the performance of organic electronic devices. However, reliable models to predict energetics at strongly coupled interfaces are still lacking. We elucidate contact formation of 1,2,5,6,9,10-coronenehexone (COHON) to the (1 1 1)-surfaces of coinage metals by means of ultraviolet photoelectron spectroscopy, x-ray photoelectron spectroscopy, the x-ray standing wave technique, and density functional theory calculations. While for low COHON thicknesses, the work-functions of the systems vary considerably, for thicker organic films Fermi-level pinning leads to identical work functions of 5.2 eV for all COHON-covered metals irrespective of the pristine substrate work function and the interfacial interaction strength.Deutsche Forschungsgemeinschafthttps://doi.org/10.13039/501100001659Soochow University-Western University Joint Center for Synchrotron Radiation ResearchCollaborative Innovation Center of Suzhou Nano Science & Technology111 Project of the Chinese State Administration of Foreign Experts AffairsAustrian Science Fundhttps://doi.org/10.13039/501100002428National Key R&D Program of ChinaPeer Reviewe
    • 

    corecore