40 research outputs found

    A review of human biomonitoring in selected Southeast Asian countries

    Get PDF
    Rapid development and industrialization in Southeast (SE) Asia has led to environmental pollution, potentially exposing the general population to environmental contaminants. Human biomonitoring (HBM), measurement of chemical and/or their metabolites in human tissues and fluids, is an important tool for assessing cumulative exposure to complex mixtures of chemicals and for monitoring chemical exposures in the general population. While there are national HBM programs in several developed countries, there are no such national programs in most of the SE Asian countries. However, in recent years there has been progress in the field of HBM in many of the SE Asian countries. In this review, we present recent HBM studies in five selected SE Asian countries: Bangladesh, Indonesia, Malaysia, Myanmar and Thailand. While there is extensive HBM research in several SE Asian countries, such as Thailand, in other countries HBM studies are limited and focus on traditional environmental pollutants (such as lead, arsenic and mercury). Further development of this field in SE Asia would be benefited by establishment of laboratory capacity, improving quality control and assurance, collaboration with international experts and consortiums, and sharing of protocols and training both for pre-analytical and analytical phases. This review highlights the impressive progress in HBM research in selected SE Asian countries and provides recommendations for development of this field.The work of the first author was supported by the Environment and Health Fund, Jerusalem, Israel.S

    Using a Variety of Interactive Learning Methods to Improve Learning Effectiveness: Insights from AI Models Based on Teaching Surveys

    Get PDF
    The last decade has brought far-reaching changes in higher education, leading institutions to shift some or all instruction online. This shift to distance learning has contributed to a more significant need for active learning: changing students from passive knowledge consumers into proactive knowledge producers using interactive teaching practices. The present study joins an emerging body of literature examining the relationship between active learning, the online environment, and students’ performance. In this study, we examined the effect of four interactive learning methods (combined with technology) on students’ overall assessments of the class, the clarity of the teaching, and the perceived effectiveness of online distance learning. The data source for the research is teaching evaluation surveys filled out by undergraduate and master’s students. In total, we analyzed ~30,000 surveys completed by ~4,800 students from 23 departments, covering 1,265 classes taught by 385 lecturers. We used both classic statistical and AI-based methods. Our findings suggest associations between high use of interactive learning methods and higher student evaluation scores, higher perceived effectiveness of distance learning, and clearer course teaching. A more interesting finding indicates that not only the extent of use, but also use of a variety of interactive learning methods significantly affects the perceived clarity of teaching and learning effectiveness. Based on the findings, we recommend that academic staff integrate a variety of interactive teaching methods, and especially short knowledge tests, in their courses (both online and frontal). Beyond these results, the prediction model we built can be used to examine what mix of different interactive learning methods might improve students’ evaluations of any given course

    Analysis of the transcriptional networks underpinning the activation of murine macrophages by inflammatory mediators

    Get PDF
    Macrophages respond to the TLR4 agonist LPS with a sequential transcriptional cascade controlled by a complex regulatory network of signaling pathways and transcription factors. At least two distinct pathways are currently known to be engaged by TLR4 and are distinguished by their dependence on the adaptor molecule MyD88. We have used gene expression microarrays to define the effects of each of three variables-LPS dose, LPS versus IFN-beta and -gamma, and genetic background-on the transcriptional response of mouse BMDMs. Analysis of correlation networks generated from the data has identified subnetworks or modules within the macrophage transcriptional network that are activated selectively by these variables. We have identified mouse strain-specific signatures, including a module enriched for SLE susceptibility candidates. In the modules of genes unique to different treatments, we found a module of genes induced by type-I IFN but not by LPS treatment, suggesting another layer of complexity in the LPS-TLR4 signaling feedback control. We also observe that the activation of the complement system, in common with the known activation of MHC class 2 genes, is reliant on IFN-gamma signaling. Taken together, these data further highlight the exquisite nature of the regulatory systems that control macrophage activation, their likely relevance to disease resistance/susceptibility, and the appropriate response of these cells to proinflammatory stimuli

    EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014–2021)

    Get PDF
    Funding Information: The authors would like to thank everybody who contributed to the HBM4EU Aligned Studies: the participating children, teenagers, adults and their families, the fieldworkers that collected the samples and database managers that made the information available to HBM4EU, the HBM4EU project partners, especially those from WP7 for developing all materials supporting the fieldwork, WP9 for organizing the QA/QC scheme under HBM4EU and all laboratories who performed the analytical measurements. We would like to acknowledge Sun Kyoung Jung from the National Institute of Environmental Research of South-Korea for providing the KoNEHS Cycle III results (crt adjusted). HBM4EU is co-financed under Horizon 2020 (grant agreement No 733032). The authors thank all principal investigators of the contributing studies for their participation and contribution to the HBM4EU Aligned Studies and the national program owners for their financial support. Further details on funding for all the participating studies can be found in the Supplemental Material, Table S12.As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants of three age groups: (i) 3,576 children aged 6–12 years, (ii) 3,117 teenagers aged 12–18 years and (iii) 4,102 young adults aged 20–39 years. The participants were recruited between 2014 and 2021 in 11–12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Σ (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability and will give leverage to national policy makers for the implementation of targeted measures.publishersversionpublishe

    Harmonized human biomonitoring in European children, teenagers and adults: EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014–2021)

    Get PDF
    HBM4EU is co-financed under Horizon 2020 (grant agreement No 733032).As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants from three age groups: (i) 3,576 children aged 6-12 years, (ii) 3,117 teenagers aged 12-18 years, and (iii) 4,102 young adults aged 20-39 years. The participants were recruited between 2014 and 2021 in 11-12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, and benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs, and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with the highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Σ (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European-wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability, and will give leverage to national policymakers for the implementation of targeted measures.info:eu-repo/semantics/publishedVersio

    Harmonized human biomonitoring in European children, teenagers and adults : EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014–2021)

    Get PDF
    Funding Information: The authors would like to thank everybody who contributed to the HBM4EU Aligned Studies: the participating children, teenagers, adults and their families, the fieldworkers that collected the samples and database managers that made the information available to HBM4EU, the HBM4EU project partners, especially those from WP7 for developing all materials supporting the fieldwork, WP9 for organizing the QA/QC scheme under HBM4EU and all laboratories who performed the analytical measurements. We would like to acknowledge Sun Kyoung Jung from the National Institute of Environmental Research of South-Korea for providing the KoNEHS Cycle III results (crt adjusted). HBM4EU is co-financed under Horizon 2020 (grant agreement No 733032). The authors thank all principal investigators of the contributing studies for their participation and contribution to the HBM4EU Aligned Studies and the national program owners for their financial support. Further details on funding for all the participating studies can be found in the Supplemental Material, Table S12. Funding Information: The authors would like to thank everybody who contributed to the HBM4EU Aligned Studies: the participating children, teenagers, adults and their families, the fieldworkers that collected the samples and database managers that made the information available to HBM4EU, the HBM4EU project partners, especially those from WP7 for developing all materials supporting the fieldwork, WP9 for organizing the QA/QC scheme under HBM4EU and all laboratories who performed the analytical measurements. We would like to acknowledge Sun Kyoung Jung from the National Institute of Environmental Research of South-Korea for providing the KoNEHS Cycle III results (crt adjusted). HBM4EU is co-financed under Horizon 2020 (grant agreement No 733032). The authors thank all principal investigators of the contributing studies for their participation and contribution to the HBM4EU Aligned Studies and the national program owners for their financial support. Further details on funding for all the participating studies can be found in the Supplemental Material, Table S12 . Publisher Copyright: © 2023 The AuthorsAs one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants of three age groups: (i) 3,576 children aged 6–12 years, (ii) 3,117 teenagers aged 12–18 years and (iii) 4,102 young adults aged 20–39 years. The participants were recruited between 2014 and 2021 in 11–12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Σ (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability and will give leverage to national policy makers for the implementation of targeted measures.Peer reviewe

    Association between Chronic Exposure to Ambient Air Pollutants, Demography, Vaccination Level, and the Spread of COVID-19 during 2021 Delta Variant Morbidity Wave

    No full text
    Studies conducted in the early COVID-19 pandemic stages showed positive associations between chronic exposure to ambient air pollution and COVID-19 morbidity. Here, we examined the associations between populations’ chronic exposure to air pollutants (NO2, CO, PM10, PM2.5, and SO2), demographics, and vaccination rates, to COVID-19 morbidity rates in 280 Israeli municipalities during the Delta-variant-dominated morbidity wave of summer 2021. We found that COVID-19 morbidity was positively associated with chronic exposure to air pollutants, the municipality’s population density, total population size, and the rate of elderly people. Multivariate linear regression models showed similar trends: positive associations between COVID-19 rates and density, ratio of elderly people, and most air pollutants, and a non-significant link to COVID-19 vaccine second dose ratio. Our results emphasized the effects of chronic air pollution exposure on the spread of the pandemic and strengthen the urgent need for uncompromising policy for a dramatic reduction in air pollution. They also highlighted the vulnerable populations (elderly, densely populated municipalities) during the Delta morbidity wave. These findings could assist policy makers to better inform the public and manage health policies in future COVID-19 waves, hopefully leading to a reduced impact on health

    Association between Chronic Exposure to Ambient Air Pollutants, Demography, Vaccination Level, and the Spread of COVID-19 during 2021 Delta Variant Morbidity Wave

    No full text
    Studies conducted in the early COVID-19 pandemic stages showed positive associations between chronic exposure to ambient air pollution and COVID-19 morbidity. Here, we examined the associations between populations’ chronic exposure to air pollutants (NO2, CO, PM10, PM2.5, and SO2), demographics, and vaccination rates, to COVID-19 morbidity rates in 280 Israeli municipalities during the Delta-variant-dominated morbidity wave of summer 2021. We found that COVID-19 morbidity was positively associated with chronic exposure to air pollutants, the municipality’s population density, total population size, and the rate of elderly people. Multivariate linear regression models showed similar trends: positive associations between COVID-19 rates and density, ratio of elderly people, and most air pollutants, and a non-significant link to COVID-19 vaccine second dose ratio. Our results emphasized the effects of chronic air pollution exposure on the spread of the pandemic and strengthen the urgent need for uncompromising policy for a dramatic reduction in air pollution. They also highlighted the vulnerable populations (elderly, densely populated municipalities) during the Delta morbidity wave. These findings could assist policy makers to better inform the public and manage health policies in future COVID-19 waves, hopefully leading to a reduced impact on health

    Strategies for patient empowerment through the promotion of medicines in Israel: regulatory framework for the pharmaceutical industry

    No full text
    Abstract The correct and rational use of medications can have a positive direct impact on disease outcomes, as well on the utilization of the health system resources. Unfortunately, 50% of the patients do not take their medications as prescribed, largely due to lack of patients’ understanding of their medical condition, as well as the lack of reliable medicine information. There are multiple strategies implemented in many countries to tackle this challenge including: disease awareness campaigns (DAC) to raise the public awareness to specific diseases, direct-to-consumer advertisement (DTCA) to raise the public awareness to prescription medicines, specific treatments and over-the-counter (OTC) products to improve the accessibility of patients to specific medicines. Prior to 2013, the Israeli policy prohibited prescribing medication advertising and prevented the flow of information from pharmaceutical companies to the patient. In the last five years, the Pharmaceutical division in the Israeli Ministry of Health, as part of the “empowering the patient” agenda, has taken new innovative approaches to raise public awareness to diseases, medications and appropriate usage, as well as promotion of information to improve patient adherence to the prescribed medication. This paper elaborates on the aforementioned strategies implemented in developed countries, and specifically focuses on newly implemented strategies and regulations in Israel regarding pre- and post-prescription information, to improve patient appropriate utilization and adherence to medication

    Association between parental smoking and child exposure to environmental tobacco smoke in Israel

    No full text
    Abstract Background Environmental tobacco smoke (ETS) exposure in children can cause delayed lung development and lifelong cardiovascular damage. The aim of this study was to measure ETS exposure in children in Israel in 2020–2021 using urinary cotinine (UC) measurements and to assess correlates of ETS exposure, including parental smoking. Methods In the framework of the National Human Biomonitoring Program, spot urine samples and questionnaire data were collected from 166 children aged 4–12 years, during the years 2020–2021. We collected urine samples in 233 adults, 69 of whom were parents of children included in the study. Parents of participating children were asked about parental smoking, child’s exposure to ETS and smoking policy at home. Cotinine and creatinine were measured in urine. Creatinine-adjusted and unadjusted urine cotinine (UC) geometric means were calculated. Associations between potential correlates and UC concentrations were analyzed in univariate and multivariate analyses. For 69 child-parent pairs, correlation between child and parental UC was analyzed. Results Based on urinary cotinine measurement, 65.2% of children of smokers are exposed to ETS, compared to 20.7% of children in non-smoking families. Greater numbers of smokers living in the home (beta = 1.27, p < 0.01), and low maternal education (beta = − 2.32, p < 0.01) were associated with higher levels of UC in a multivariate analysis. Spearman correlations showed a positive moderate correlation between UC in 69 child–parent pairs (r = 0.52, p < 0.01). Conclusions In order to reduce child exposure to ETS, smoking parents should be urgently targeted for smoking cessation and smoke-free home interventions. Further interventions are needed to protect all children from ETS
    corecore