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ABSTRACT

Macrophages respond to the TLR4 agonist LPS with

a sequential transcriptional cascade controlled by

a complex regulatory network of signaling pathways

and transcription factors. At least two distinct pathways

are currently known to be engaged by TLR4 and are

distinguished by their dependence on the adaptor

molecule MyD88. We have used gene expression

microarrays to define the effects of each of three

variables—LPS dose, LPS versus IFN-b and -g, and

genetic background—on the transcriptional response

of mouse BMDMs. Analysis of correlation networks

generated from the data has identified subnetworks

or modules within the macrophage transcriptional

network that are activated selectively by these

variables. We have identified mouse strain-specific

signatures, including a module enriched for SLE

susceptibility candidates. In the modules of genes

unique to different treatments, we found a module

of genes induced by type-I IFN but not by LPS

treatment, suggesting another layer of complexity in

the LPS-TLR4 signaling feedback control. We also

observe that the activation of the complement system,

in common with the known activation of MHC class 2

genes, is reliant on IFN-g signaling. Taken together,

these data further highlight the exquisite nature of

the regulatory systems that control macrophage

activation, their likely relevance to disease

resistance/susceptibility, and the appropriate re-

sponse of these cells to proinflammatory stimuli.

J. Leukoc. Biol. 96: 167–183; 2014.

Introduction

Macrophages are primary effectors of the innate immune system.
They recognize pathogens and other foreign entities through
expression of an extensive repertoire of surface and intracellular
receptors [1]. When activated, these receptors trigger signaling
pathways that act to alter the transcriptional landscape of the
cells, thereby tailoring their functional activity, according to local
conditions. The nature of the response varies with pathogen type
and exposure, host genotype, and the phenotype of the cell
before activation [2]. As much of the pathology of infectious and
inflammatory disease is initiated by macrophage activity [3], their
response to a given insult must be appropriate and tightly
regulated. LPS or endotoxin, an outer-membrane component of
Gram-negative bacteria, is the most studied pathogen-associated
molecule and used to model many aspects of infection and
inflammation. In mammalian cells, recognition of LPS involves
a series of interactions with several proteins [4], including the
LPS-binding protein, CD14, LY96 (myeloid differentiation pro-
tein 2), and TLR4. The receptor complex then initiates at least
two distinct signaling pathways, distinguished by the dependence
on the adaptor MyD88 [4]. The MyD88-independent pathway
activates the IRF3 transcription factor, resulting in IFN-b
expression, which then acts in an autocrine manner to contribute
to the subsequent LPS-transcriptional response [5, 6]. The
MyD88-dependant pathway is the main protagonist in the
activation of the MAPK and NF-kB signaling pathways. A subset of
the immediate-early, LPS-responsive genes, including Tnf and
Ifnb1, is activated through the promotion of transcription
elongation from poised transcription initiation complex, ensur-
ing the rapid onset of the response [7, 8]. Motif analysis has been
used in a number of studies of the LPS response to infer the
identity of key transcriptional regulators, leading to identification
of ATF3 and NF-E2 as feedback regulators [9, 10].
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The response of macrophages to LPS is dose-dependent [11,
12]. At the receptor level, CD14 is known to enhance the
sensitivity of the TLR4/LY96 receptor complex to endotoxin
[13], and mice lacking CD14 are resistant to endotoxic shock
[14]. Different LPS-responsive genes can display distinct dose-
response curves [15]. The response to LPS is also regulated by
other signals, notably from the acquired immune response. One
of the key functions of the Th1 cytokine IFN-g is to sensitize
macrophages to activation by pathogen challenge, including LPS
[16, 17]. IFN-g and LPS signals synergize at a number of levels,
from their signaling pathways, transcription factor activation and
target gene regulation [17], and feedback control, via the SOCS
proteins [18]. Signals also converge at key transcription factors,
such as LPS-mediated phosphorylation of Stat1, a crucial
cytosolic factor for IFN-g-dependent gene regulation [17]. There
is a related cross-talk and synergy between LPS and type-I IFN
signaling. In macrophages, LPS stimulation induces the rapid
transcription of IFN-bmRNA and protein secretion [19]. In turn,
IFN-b signaling forms a key portion of the LPS transcriptional
response and LPS-induced lethality [5, 6]. The type I and type II
IFN systems have overlapping but nonredundant activities [20,
21] and activate many of the same genes, although the specifics
are ill-defined.
There are significant differences in the set of LPS-induced

genes between macrophages derived from different inbred
mouse strains [22, 23] and between mammalian species, but
overall, the transcriptional networks are similar [24, 25]. The
C57BL/6 strain of mice is, by far, the most widely used and
studied experimental rodents. It is considered the prototypical
Th1 strain, and its macrophages produce NO more readily in
response to classical activators (LPS, IFN-g) than macrophages
from BALB/c, the prototypical Th2 strain. The T lymphocytes of
BALB/c mice generate more IL-4 and Th2 cytokines, and these
stimulate macrophage arginine metabolism by inducing arginase
[26]. Another key difference between the strains is the autocrine
IFN signaling in C57BL/6 mice; C57BL/6 macrophages display
IFN-dependent, differential resistance to Newcastle disease virus
[27] and respond to LPS as if IFN-primed [23]. Strain-specific
methylation patterns have been shown to contribute to differ-
ences in gene expression between the two strains, including the
Gbp1 gene [28], and their macrophages differ in response to
Yersinia enterocolitica infection [29] and Leishmania major
infection [30].
We have previously used the transcriptional network analysis

tool BioLayout Express3D to dissect the transcriptional land-
scape of different populations of mouse cells [31, 32]. With
a sufficiently large dataset, genes with related function often
share robustly correlated expression patterns across datasets.
When correlation matrixes of expression data are analyzed as
networks, these form cliques of high connectivity within the
graph. Such gene clusters commonly contain the transcription
factors that regulate them; for example, a robust set of genes,
coexpressed in phagocytes, contained lysosome-related genes
and known transcription regulators PU.1 and C/EBP [31]. In
the current study, we focus our analysis on the transcriptional
networks induced in BMDMs of the mouse stimulated by “clas-
sical”-activating factors. In this study, the murine macrophage
transcriptional network has been systematically perturbed by

exposure to IFN-b and -g, varying concentrations of LPS and
on different genetic backgrounds. In each case, the time-
course of transcriptional events has been monitored using
whole genome gene expression microarrays. The results indicate
that the LPS response can be subdivided into transcriptional
modules of genes that encode proteins with specific and different
roles in innate immunity.

MATERIALS AND METHODS

Cell culture and treatment
BMDMs were prepared from femurs of 7- to 8-week-old male BALB/cJ or
C57BL/6J mice (Charles River Laboratories, UK). Complete culture media
were composed of RPMI-1640 medium (Sigma-Aldrich, Gillingham, UK),
supplemented with 10% heat-inactivated FBS (Sigma-Aldrich), 25 U/ml
penicillin (Invitrogen, Paisley, UK), 25 mg/ml streptomycin (Invitrogen),
and 2 mM L-glutamine (Invitrogen). Briefly, bone marrow cells were
cultured for 6 days in complete medium in the presence of 10,000 U/ml
CSF-1 on 10 cm2 bacteriological plastic plates, with a resupplement of
CSF-1 on Day 5. On Day 6, cells were harvested, counted, resuspended in
complete medium with 10,000 U/ml CSF-1, and seeded into 24-well tissue-
culture plates at a density of 200,000 cells/well. Twenty-four hours later
(Day 7), BALB/c-derived cells were treated with one of the following: 10 U/ml
mouse rIFN-b (PBL InterferonSource, Piscatway, NJ, USA), 10 U/ml IFN-g
(Perbio Science, Northumberland, UK), or 5 ng/ml LPS (Salmonella
minnesota Re595; Sigma-Aldrich), collected pretreatment (0 h) and then, at
1, 2, 4, 8, and 24 h, post-treatment. C57BL/6-derived macrophages were
treated with LPS at 0.5 ng/ml, 5 ng/ml, or 50 ng/ml and harvested at the
same time-points as BALB/c (see Fig. 1 and Supplemental Table 1). All
treatments were performed in the presence of CSF-1, as it is constitutively
present in vivo. Moreover, CSF-1 is itself induced upon macrophage activation
with LPS and has been shown to enhance the activation of some genes by
LPS [33].

RNA extraction, quality control, and labeling for arrays
Total RNA was harvested from the cells using an RNeasy Plus kit (Qiagen,
Crawley, UK), according to the manufacturer’s instructions. RNA was
quantified and quality-controlled using a NanoDrop spectrophotometer
(NanoDrop Technologies, Wilmington, DE, USA) and 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA) to determine RNA purity and
integrity. Replicate 250-ng samples of total RNA, derived from two separate
wells/time-point, were first processed using the Ambion WT Expression Kit
(Life Technologies, Carlsbad, CA, USA) to generate amplified and
biotinylated sense-strand DNA targets from the entire genome without bias.
Sense-strand DNA samples were then labeled and hybridized to the Affymetrix
Mouse Gene 1.1 ST Array Plate using the GeneChip WT terminal labeling and
hybridization kit (Affymetrix, Santa Clara, CA, USA), according to the
manufacturer’s recommendation. Individual arrays interrogate .28,000
annotated transcripts using .770,000 distinct probes. Hybridization, washing,
and scanning of the 64 arrays were performed in a single run using the
Affymetrix GeneTitan instrument, according to the manufacturer’s
recommendations.

Data processing and network analysis
Data (submitted to GEO, GSE44292) was normalized and annotated using the
Robust Multichip Analysis package within the Affymetrix Expression Console
software. Empirical Bayes statistical analysis was performed using the
Bioconductor package (www.bioconductor.org). Network analysis of the
normalized expression data was performed using BioLayout Express3D [34].
The specifics for each analysis are described below.
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LPS dose-response analysis
To begin, the expression data for the 50-ng/ml LPS time-course on
C57BL/6 macrophages was analyzed in isolation, and then, all C57BL/6
LPS treatment samples at each dose were examined together. Taking the
50-ng/ml LPS time-course samples, a Pearson correlation matrix of
a transcript-to-transcript profile comparison was used to filter for expression
relationships of r . 0.95, generating a graph of 2950 nodes (transcripts),
connected by 174,621 edges (correlations greater than threshold). To identify
modules of tightly coexpressed genes, the graph was clustered using the
graph-based clustering algorithm MCL [35], set at a MCLi of 1.7 (which
determines the granularity of the clusters), generating 60 clusters of
coexpressed genes.

Taking data for all arrays of the LPS dose-response samples, 16,856 “low-
expressed” probes (expressed ,40 in all arrays) were removed. An initial
network graph of the remaining probes was constructed by filtering for at
least r . 0.85, generating a graph of 11,601 nodes connected by 1,221,571
edges. The graph was clustered using a MCLi of 2.2, generating 241
clusters. Probes (9678) were within these clusters, which were inspected, and
those representing noise/technical artifacts, annotated as a result of a dif-
ference in the intensity of the arrays across the plate (2583 transcripts in
total), were removed from the subsequent analysis.

A further network graph was then constructed but this time, at cut-off of r.
0.87, generating a graph of 8425 nodes, connected by 805,049 edges. Cluster
analysis was performed using a MCLi of 2.2, resulting in 254 clusters with at
least four nodes. Transcripts (7289) were within clusters; 6160 of these within
clusters associated with LPS treatment (www.macrophages.com/Raza2013-
expression-networks), and 1129 transcripts were within correlated but not
regulated clusters of genes. The clusters were annotated as representing “up”-
or “down”-regulated patterns of expression. Transcripts (3212) were within
clusters representing down-regulated patterns; 305 transcripts were clusters
showing down-regulation at first and then up-regulation later. Nodes (2545)
were within up-regulated clusters and 98 within clusters, representing up-
regulation at first and repressed at later time-points. A detailed examination of
dose responsiveness was carried out on the probes within up-regulated clusters
(including up first and later repressed), totaling 2643 probes. With the use of
the expression profile of each probe, its relative AUC was compared at the
different LPS dose treatments (0.5, 5, and 50 ng/ml). The AUC ratios at each
dose were compared to ascertain the dose responsiveness of each transcript. A
detailed description of the AUC analysis is provided in Supplemental Fig. 1. A
hierarchical cluster-interaction network of the up-regulated clusters and their
gene members was created using the yEd Graph Editor software and
BioLayout Express3D. Color-coded, dose-responsiveness categories (determined
from the AUC analysis) were overlaid onto the graph.

Mouse strain comparison
Statistical filtering. A number of filtering steps were applied to deter-

mine genes most differentially expressed between the two strains. The
Empirical Bayes function within the Bioconductor package (www.bioconductor.
org) was used to find: (1) genes most differentially expressed overall
between the two strains and (2) those behaving most differentially over time
between the strains by comparing the differentials at each time-point com-
parison (0 h vs. other time-points) for each strain. Genes (897) passed the
first filter (at an adjusted P value cut-off of,0.05 and fold change of at least 1.5).
One thousand four hundred ninety-six passed the second filter (adjusted
P value cut-off of ,0.05). There was an overlap of 151 genes between the two
lists. The aggregated list was taken forward to determine the main differences
between the two strains. Probes with a low signal (expression value ,50 in
22 of the 24 arrays) were excluded (311 probes in total). Individual profiles
of the low-expressed probes were inspected, and most were background
noise/artifacts. However, 14 probes displayed expression patterns distinct to
one strain or the other, so they were retained for further analysis. The
remaining 297 low-expressed probes were excluded.

A network of graphs of the remaining “differentials list” was constructed
to inspect the main patterns of expression in the dataset. The resultant
graph (r.0.85) consisted of 1754 nodes, connected by 58,445 edges and

was subjected to cluster analysis using a MCLi of 2.2. This generated 46
clusters with a membership of at least five nodes (www.macrophages.com/
Raza2013-expression-networks). The clusters were inspected for patterns of
expression associated with treatment over the time-courses or mouse strain,
and gene lists associated with clusters were exported for GO annotation
analysis (Biological and Metabolic Processes Level–FAT) using the DAVID
tool [36].

Identification of null expression alleles
To identify those transcripts that are null or very weakly expressed in one
strain compared with the other, further filtering was applied to the list of
differentials. Probes with expression of ,100 in all arrays in one strain but
expressed .100 in at least two arrays of the other strain were extracted for
further inspection, as were probes where six or more arrays in one strain
versus the other had expression of ,100. In total, 346 probes passed this
filter. Their individual profiles were inspected, and 124 transcripts were
marked as convincingly null-expressed in one strain.

From this list and the cluster analysis, some of the most compelling
examples of strain-specific expression are shown in Supplemental Fig. 2.
These are divided into six groups: transcripts expressed in BALB/c .

C57BL/6; C57BL6 . BALB/c; induced by LPS in BALB/c but not (or
barely) in C57BL/6; induced by LPS in C57BL/6 but not (or barely) in
BALB/c; and induced/repressed in both strains but to a far greater extent
in one or the other.

IFN and LPS comparisons
An initial filtering step was performed by filtering a network graph of
expression data relating to all of the probes (transcripts) on the array at r .
0.85 cut-off threshold. The resultant network graph of 11,258 nodes,
connected by 270,601 edges, was then clustered at a MCLi of 2.2, resulting
in .600 clusters with at least greater than or equal to three nodes. Clusters
related to technical artifacts or patterns of expression unchanging across
the 32 arrays were eliminated. A further network graph, relating only to
the data from probes within “interesting” clusters of the filtered graph
(3747 nodes), was generated (by filtering relationships at r.0.85 and
clustering the consequential graph at a MCLi of 2.2). The clusters were
inspected for patterns of expression associated with treatment over the time-
courses, and gene lists associated with clusters were exported for GO
annotation analysis (Biological Processes Level–FAT), using the DAVID tool.
Cluster patterns and annotations are detailed at www.macrophages.com/
Raza2013#LPS-vs-interferon.

Analysis of transcription factor-binding enrichment in
expression clusters identified here and comparison
with data generated in a previous study
In a previous study, Amit et al. [37] examined the transcriptional response of
bone marrow monocytes matured in GM-CSF (CSF-2), commonly referred to
as BMDCs, to five TLR agonists at nine time-points following stimulation. This
group also went on to examine the DNA interaction dynamics of 25
transcription factors in this cell system [38]. To better understand the
transcriptional control of the clusters of genes observed here to be regulated
by LPS and how the current study compares with the data generated by
this group, we have attempted a direct comparison. The study by Amit
et al. [37] used the Affymetrix HT_MG-430A chip to monitor expression
following activation by the TLR agonists. The data were downloaded from
GEO (GSE17721) and analyzed using the network analysis approach
described above. In brief, a “.expression” file was generated, and correlation
network was constructed of relationships where r . 0.85 and clustered
(MCLi, 1.7). Clusters were then annotated based on the average pattern of
expression of each cluster. The same analysis was performed on the data
generated here. A hypergeometric test was then performed to examine
both sets of expression clusters for an enrichment of genes, which are
known targets of the 25 transcription factors examined by Garber et al.
[38]. Results were subjected to a Bonferroni correction for multiple hy-
potheses, and results, where P , 0.0001, were reported.
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Supplemental material
Supplemental Table 1 analyzed BMDM samples and treatment—a list of all
analyzed samples, specifying the mouse strain origin, treatment type,
treatment concentration, and time of sampling. Supplemental Fig. 1
categorizes dose-responsiveness based on AUC. This described the method-
ology behind calculating the AUC for transcripts at each dose treatment and
how the dose-responsive patterns are determined from the relative ratios of
AUCs at one dose treatment versus another. Nineteen different patterns of
dose responsiveness are described, as is their grouping into five broader
categories. Supplemental Fig. 2 includes selected expression profiles of strain-
specific differentials. Sixty-three of the most compelling examples of strain-
specific/biased expression (taken from a filtered short list of 124 genes) are
shown in this material. The examples are grouped, based on the overall
characteristics of their expression, e.g., transcripts with differential expression
in either strain, regardless of LPS treatment, or transcripts induced by LPS in
one strain but not the other. Supplemental Table 2 illustrates cluster
annotations of all cluster analyses. This material contains details of all genes
within any of the network analyses in this study, including their cluster
(coexpression) membership, description of their expression pattern, and any
other accompanying details. Gene annotations and normalized expression
data are also provided. Specifics for each analysis can be viewed by expanding
the appropriate columns; to do this, click on the + sign above the column of
interest on the spreadsheet.

RESULTS

Network-based approach for dissecting the mouse-
BMDM transcriptional response to LPS
The genome-wide transcriptional response of macrophages to
LPS has been examined previously [10, 39, 40]. We set out to
examine the LPS response using the latest generation of whole
genome microarray technology and more advanced computation
analytical methods. We sought to examine three aspects of the
response: (1) the variation in response to a 100-fold range in LPS
dose; (2) the influence of mouse genetic background; and (3)
a comparison of the LPS response with the response to IFN-b
or IFN-g.
In total, six time-course experiments were set up in parallel

(Fig. 1 and Supplemental Table 1). BMDMs were derived from
C57BL/6 or BALB/c mice. C57BL/6 macrophages were treated
with of 0.5, 5, or 50 ng/ml LPS, and BALB/c-derived macro-
phages were treated with 5 ng/ml LPS, 10 U/ml mouse rIFN-b,
or 10 U/ml IFN-g. The design of each time-course was the same,
and cultures of BMDMs were treated and then harvested at 0 h
(before stimulation) and then 1, 2, 4, 8, and 24 h post-treatment.
Two replicate samples were collected for each treatment at each
time-point. All RNA samples were processed simultaneously for
microarray analysis, including the labeling, hybridization, and
scanning steps. We applied a combination of statistical filtering
and gene coexpression network analysis to interpret the
expression data.

Dose-dependent and -independent actions of LPS
The initial baseline analysis replicates and extends the previous
study [10] of the response of BMDM from C57BL/6 macro-
phages to a maximally stimulatory concentration of salmonella
R595 LPS (50 ng/ml). A Pearson correlation matrix of a
transcript-to-transcript profile comparison was used to filter
the LPS time-course data for expression correlation relation-
ships of r . 0.95. A graph of 2954 nodes, connected by

174,669 edges, was generated (Fig. 2, and see www.macrophages.
com/Raza2013-expression-networks). To identify cohorts of
tightly coexpressed genes, the graph was clustered using an
MCLi of 1.7. Sixty clusters of coexpressed genes were gener-
ated, ranging in size from 956 to four nodes. A full breakdown
of the clusters, their gene membership, and description of
expression patterns is provided in Supplemental Table 2 (Excel
file column LPS 50 ng/ml C57BL/6 analysis). The expression
patterns of selected clusters of coexpressed genes are shown in
Fig. 2. As noted previously [10], the response is a temporal
cascade that changes continuously over 24 h. The immediate-
early and early response consisted of only 47 genes. These
were highly enriched for regulatory factors, including many
transcription factors (Egr2, Fosl1, Irf4, Junb, Klf6, Maff, Nr4a1,
Spry1, Zbtb10), other regulatory molecules (Errfi1, Ifrd1, Phlda1,
Prdm2, Ppp1r15a, Rcan1), and cytokines (Cxcl1, Cxcl2, Lif, Tnf,
Tnfsf9). These data also confirm the self-limiting nature of
the LPS response [23], with a large number of negative
regulators up-regulated early in the response, including
a number of DUSPs (Dusp4, Dusp5, Dusp8, Dusp14) NF-kB
regulators (Nfkbia, Nfkbid, Nfkbiz, Tnfaip3), and the regulator
of mRNA stability (Zfp36), whose actions are known to
inhibit the activation of the LPS signaling pathways (Fig. 2).
The mid and mid-to-late transcriptional changes contain the
hallmarks of classical macrophage activation; the up-regulated
genes include type-I IFN response genes (Ifi204, Ifi205, Ifi35,
Ifi47, Ifih1, Ifit1, Ifit2, Ifit3), ILs (Il12a, Il18, Il27, Il7), solute
carriers (Slc11a, Slc15a3, Slc25a12, Slc25a22, Slc25a43, Slc26a2),
pattern recognition receptors (Tlr3, Tlr6, Tlr7, Tlr8, Nod1, Nod2,
Aim2), and chemokines (Ccl3, Ccl4, Ccl8, Ccl17, Ccl22, Cxcl3,
Cxcl9, Cxcl10, Cxcl11, Cxcl16; Supplemental Table 2). The
second-largest cluster of genes in the network graph (Cluster
2), containing 784 transcripts, whose expression peaked at 8 h
post-LPS treatment, formed part of this mid-to-late LPS
response. However, the largest cluster of coexpressed genes
comprised transcripts whose expression was repressed 8–24 h
post-LPS. Accordingly, the down-regulated clusters contained
1125 genes (1252 transcripts), including numerous cell cycle-
associated genes, such as the cyclins (Ccna2, Ccnb1, Ccnb2,
Ccne1, Ccnf, Ccny), cyclin-dependant kinases (Cdk1, Cdk2,
Cdk4, Cdk15, Cdk19), kinesin family members (Kif2c, Kif4,
Kifc1, Kif11, Kif14, Kif15), DNA replication initiators (Mcm2,
Mcm3, Mcm4, Mcm5), the S-phase transcription factor (E2f1),
and the CSF-1R target, urokinase plasminogen activator
(Plau). These data are consistent with the previously reported
ability of LPS to block signaling from the CSF-1R, thereby
causing growth arrest in BMDMs, as well as repressing CSF-1R
target genes [41].
Costelloe et al. [15] reported previously that certain LPS-

responsive genes responded differently to different doses of
LPS. Such differential sensitivity might arise if the two LPS
signaling pathways have distinct sensitivities, and it could be
important to ensure that the response is commensurate with
the magnitude of the challenge. No previous genome-scale
studies have considered dose responsiveness. Accordingly,
C57BL/6 macrophages were treated with three different doses
of LPS (0.5, 5, and 50 ng/ml), and the transcriptional response
was assessed at five time-points following administration. A network
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graph of prefiltered expression data was constructed from
transcript-to-transcript, at r . 0.87. The graph comprised 8425
nodes (transcripts) connected by 805,049 edges (correlations
.0.87), and was clustered at a MCLi of 2.2. Transcripts (6160)
were classified as being within clusters of genes regulated by
LPS treatment, 3517 transcripts classified as down-regulated
and 2643 transcripts as belonging to up-regulated clusters.
The data allow analysis of the dose-responsive elements to the

LPS response. The relative AUC of each up-regulated transcript
at one dose treatment versus another was measured and
comparisons made across all three dose treatments. Nineteen
different patterns were detected (Supplemental Fig. 1) and
simplified into five broad groups based on most-similar overall
patterns, as shown in Fig. 3. Breakdown of the gene membership

in the five categories is described in Supplemental Fig. 1 and
a full list of the 6160 transcripts and their dose-responsiveness
and cluster categories is detailed in Supplemental Table 2 (Excel
file LPS dose-response analysis columns).
Fifty-six percent of the inducible genes (1480 transcripts) were

found to be dose-responsive; that is to say that their expression
increased with the dose of LPS. Many chemokines and cytokines
are among the inducible genes that show clear dose-dependence,
suggesting that the overall inflammatory response depends on
the magnitude of the challenge (Fig. 3). Genes (24.7%) were
maximally expressed even at the 0.5-ng/ml dose (assessed as be-
ing ,1.5-fold, different across comparisons at the three different
doses). Genes (4.7%) displayed their highest expression level at
5 ng/ml LPS, and 5.1% of genes also showed lowest levels of

Figure 1. Experimental workflow for mouse BMDM time-course experiments. Six time-course experiments on mouse BMDMs were set up in parallel.
Macrophages were derived from the bone marrow of the C57BL/6 or BALB/c strain of mice and differentiated using the growth factor CSF-1. Following
7 days of culture, C57BL/6 cells were treated with any of 50 ng/ml, 5 ng/ml, or 0.5 ng/ml LPS; BALB/c macrophages were treated with any of 5 ng/ml
LPS, 10 U/ml IFN-b, or 10 U/ml IFN-g. In each case, cells were harvested at 1, 2, 4, 8, and 24 h post-treatment [as well as pretreatment (0 h)]. RNA from
all samples was processed for labeling and hybridization to the Affymetrix Mouse Gene 1.1 arrays on the Array Plate format. Gene expression data were
analyzed using a combination of statistical filtering with the Bioconductor package and network-based correlation analysis using the network analysis tool
BioLayout Express3D.
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induction at 5 ng/ml LPS. Genes (9.5%) showed an inverse
correlation with increasing dose, meaning that their level of
induction was reduced with increasing LPS doses. Of the 169
transcripts up-regulated by 1 h, 106 were dose-responsive, in-
cluding six different DUSPs (Dusp1/4/5/8/10/14). Dose depen-
dence is not related to time of stimulation. In keeping with earlier
data [15], Tnf was also induced maximally at 1 h by the lowest LPS
dose, whereas induction of Ifnb1, maximal at 1–2 h, was dose-
dependent. A visualization of these dose-dependent activation
profiles is presented using the graph-animation function within
BioLayout Express3D, whereby graph nodes increase in size as their
expression increases. This highlights the expression levels of the
individual transcripts within the up-regulated network graph at the
different time-points and LPS concentrations (Fig. 4, and see www.

macrophages.com/Raza2013#LPS-dose). A hierarchical
interaction network of the up-regulated clusters is also pre-
sented (Fig. 5). The graph is arranged to flow from left to
right and in this direction, displays the temporal changes in
transcript abundance. (Supplemental Fig. 1 summarizes the
numbers of genes in each dose-responsive category at each
time phase.) The proportion of nondose-responsive transcripts
increased with the time-course, as did those whose expression
was inversely correlated with dose (Fig. 5).

Strain-specific response to LPS
We carried out a comparative time-course analysis of the
response of macrophages from C57BL/6 and BALB/c mice to
a single submaximal dose of LPS (5 ng/ml). A filtered list of

Figure 2. A transcriptional network of expression data derived from 50 ng/ml LPS time-course treatment of (C57BL/6) macrophages. A Pearson
correlation matrix of transcript-to-transcript profile comparisons was used to filter the LPS time-course data for expression correlation relationships of
r . 0.95. A network graph of 2950 nodes (transcripts), connected by 174,621 edges (r$0.95), was generated. To identify cohorts of tightly coexpressed
genes, the graph was clustered using a graph-based clustering algorithm MCLi value of 1.7. Nodes within the graph sharing the same color belong to the
same cluster, and clusters are labeled according to their number ID. The average expression profiles of transcripts within selected clusters are shown
across the sampled treatment times, along with the number of transcripts within the cluster and example genes. The graphs are grouped into clusters
representing different patterns of temporal regulation (e.g., up-early or up-late).
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.1945 genes that showed differential expression was subjected
to network analysis at a value of r . 0.85. The resultant graph
of 1754 nodes connected by 58,445 edges was clustered at
a MCLi of 2.2, generating 46 clusters with a membership of at
least five nodes. Clusters of coexpressed genes were inspected,
and their patterns of expression, over-represented GO terms,
and examples of genes are summarized in Fig. 6 and in Sup-
plemental Table 2 (Excel file mouse-strain comparison col-
umns). The largest of these clusters (Cluster 1) contained up-
regulated genes whose expression was higher in C57BL/6 than
BALB/c mice before stimulation. Many of these were known
IFN targets, consistent with the innate IFN signaling in macro-
phages derived from C57BL/6 mice (Fig. 6). Genes in Cluster
2 (associated with proton and hydrogen transport) were re-
pressed in both strains but were expressed higher in BALB/c.
Cluster 4 represented 150 transcripts induced to a much-
greater extent in C57BL/6 macrophages; the GO annotation
enrichment included “complement activation”. Stat4 was pres-
ent in this cluster, as were a number of its well-known tran-
scriptional targets (C1qa, C1qb, C1qc, Cd28). These genes have
each been implicated in SLE susceptibility [42–44], as have
several other genes (Cd244, Gpr77, Nlrp1a, Nlrp1c) within the
cluster [45–48]. Cluster 5 genes exhibited the opposite trend,
comprising 99 transcripts expressed at a higher level in

BALB/c, which are associated with immune signaling, cytokine
production regulation, and histocompatibility antigens. Other
clusters exhibited idiosyncratic patterns that serve to illustrate
the subtle connections within the transcriptional cascade.
A number of macrophage-expressed genes were absent in

BALB/c compared with C57BL/6 or vice versa. To identify
additional genes showing deleted (null) expression in one
strain or the other, further filtering steps were applied to the
dataset (see Materials and Methods) to produce a short list of
124 genes expressed in a strain-specific manner (see Supple-
mental Table 2, Column J). Sixty-three of the most compelling
examples of strain-specific/biased expression from this short
list and the cluster analysis are shown in Supplemental Fig. 2,
and six examples from these are shown in Fig. 7. For example,
the class II MHC gene H2-Ea is known to be deleted in
C57BL/6 [49, 50]; in this study, H2-Ea was undetectable in
C57BL/6 BMDMs but was strongly LPS-inducible in BMDMs
from BALB/c mice. The absence of cathepsin E in C57BL/6
macrophages also confirms earlier findings [51].

Comparison of macrophage response with IFN-b,
IFN-g, or LPS treatment
As noted in the Introduction, the responses to type I and type II
IFNs in macrophages are subtly different in terms of signaling,

Figure 3. Dose-responsive pattern of genes regulated in response to LPS treatment. Five predominant patterns of expression in response to different
doses of LPS were observed; a positive correlation of gene expression with dose, no change in gene expression level in response to dose (not dose
responsive), gene expression highest at a submaximal dose of LPS (up most at 5 ng), gene expression lowest at a submaximal dose of LPS (up least at 5 ng),
and a negative correlation of gene expression with increasing dose (inverse dose-responsive).
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and IFN-b is known to be an autocrine regulator in LPS
signaling. As C57BL/6 macrophages constitutively express
many IFN-regulated transcripts, we restricted the comparative
analysis of the responses to these three agonists to the BALB/c
line. Macrophages derived from BALB/c mice were stimulated
with 10 U/ml IFN-b, 10 U/ml IFN-g, or 5 ng/ml LPS. A network
graph of prefiltered expression data was created by filtering

for coexpression relationships at a threshold of r . 0.85,
generating a graph of 3747 nodes connected by 172,688 edges.
The graph was then clustered at a MCLi of 2.2, and clusters
were inspected for patterns of expression associated with the
three treatments over the time-course and annotated accord-
ingly (see Supplemental Table 2; Excel file IFNb/g, and LPS
analysis columns). Examples of the average expression profile

Figure 4. Graph animation of the
up-regulated transcriptional re-
sponse of BMDMs to stimulation
with three different doses of LPS
and over time. A network graph of
transcripts up-regulated in re-
sponse to LPS has been animated.
such that nodes are colored and
sized according to their relative
expression levels at each time-
point/condition. The size/color of
a node is determined by its relative
expression level: large, red nodes
denote transcripts at or near their
maximal expression level; small,
yellow nodes represent transcripts
expressed at a relatively low level
relative to their maximal expres-
sion. (Inset, upper left) General
trend in the temporal response
across the graph; for example,
nodes in the upper right graph area
are expressed from 1 h or 1–2 h
post-LPS. Arrows indicate areas of
main differences at each time-point.
Real-time animations of these data
can be viewed within the tool
BioLayout Express3D.
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across six different clusters of coexpressed genes are shown in
Fig. 8A. To visualize better the overlap and divergence in the
transcriptional response to IFN-b, IFN-g, and LPS, network
diagrams displaying the target genes of each treatment were
generated (Fig. 8B). Connections (edges) were defined
between the treatment type (IFN-b, IFN-g, and LPS) and the
genes regulated in response to a given treatment. If a particular
gene was regulated in response to all three treatments, then
there would be three input edges into the gene. Connections
from treatment type to genes were captured regardless of the
extent of transcriptional induction; i.e., genes preferentially
induced by LPS and also induced in response to IFN-b and
IFN-g (but to a lesser extent) are connected to all three
treatment types. The up-regulated response comprised tran-
scriptional targets common to all three treatments

(948 transcripts), targets shared between two treatments
only (IFN-g and IFN-b: 33, IFN-g; LPS: 11, LPS; IFN-b: 111
transcripts), and genes unique to the individual treatments
(IFN-g: 50; IFN-b: 115; LPS: 727 transcripts). In contrast to the
inducible response, all of the down-regulated targets were
essentially common to all three stimuli, albeit to varying
degrees. The group of IFN-b-specific transcripts was unex-
pected, given that LPS also induces type I IFN signaling. The
most distinctly IFN-b-specific, inducible genes included; Casp2,
Gpsm2, Grap2, Klrg2, Tnfsf8, Uaca, Abcb1a, Gna14, HapI, Slc4a11,
Cd4, Cdkn1c, and Lrrc14b. IFN-g-specific transcripts included the
C1q subunits (C1qa, C1qb, C1qc), C4b, Chrm3, Clec9a, Tnik, Naaa,
Selp, Tgm1, and Traf3ip2. Irf8 was also induced by IFN-b but to
a far greater extent by IFN-g and was not activated in response
to LPS. There were also other genes inducible by IFN-g and

Figure 5. Hierarchical cluster interaction network of the up-regulated transcriptional response to LPS. The graph is arranged to flow from left to right
and in this direction displays the temporal changes in transcription (genes up-regulated from early time-points (1 h) to late (24 h). The nodes are
colored according to their pattern of dose-responsiveness.

Raza et al. Transcriptional networks underpinning macrophage activation

www.jleukbio.org Volume 96, August 2014 Journal of Leukocyte Biology 175

http://www.jleukbio.org


IFN-b but were not induced (or far less inducible) by LPS,
including Fcgr4, Flrt2, Treml2, Ccr1, Gpr146, Ppp1r3d, Card6,
Clec1a, Ifitm6, Klk1, Klk1b11, Klk1b21, Ctnnd2, Hpse, Il12rb2,
Ncoa3, Gprc5b, Il18rap, Slc26a2, Amotl2, and Gadd45g.

Comparison with previous studies
Advances in genomics technology and the availability of new
reagents mean that it is now possible to begin to understand the
factors that regulate the transcriptional response to LPS and
other activating factors [38, 52]. We therefore decided to
examine the similarity between the data reported by Amit et al.
[37], on the transcriptional response of BMDCs derived from
C57BL/6J to five TLR agonists at nine time-points following
stimulation, and the data reported here. Network analysis of the
Amit et al. [37] data showed that the cells responded similarly
with time-dependent activation and suppression of a large
number of genes. There were also clear differences in ligand-
dependent gene activation, as well as many commonalities, as
originally reported [37]. Mapping the expression clusters
between the two datasets showed a significant overlap

between the studies. One notable exception was a distinct lack of
expression of cell cycle-related (S-, G2-, and M-phase) genes in
the Amit et al. [37] data, which in the current study, were
down-regulated strongly upon activation. This group also went
on to examine the DNA interaction dynamics of 25 transcrip-
tion factors in this cell system [38]. We therefore performed a
hypergeomtric test to examine both sets of expression clusters
for an enrichment (Bonferroni corrected, P,0.0001) of genes
that are known targets of the 25 transcription factors. As a result
of the differences in the cell populations used, array platform
used, and experimental conditions, the power of such analyses
is limited. However, there was a striking similarity between
the two analyses in terms of the enrichment of transcription
factor-binding site analyses of the main gene clusters observed
in the two studies. For example, the main up-regulated cluster
of genes (Cluster 2; maximum expression, 8–24 h post-activation)
in both studies was enriched with genes with motifs for the
following factors: Atf3, Cebpb, Rel, E2f1, Irf1, Irf2, Irf4,
Junb, Krox20, Maff, Nfkb1, PU.1 (Spi1), Rela, Relb, Runx1,
Stat1, Stat2, and Stat3, with the current also showing

Figure 6. Clusters of coexpressed genes in LPS-treated BMDMs derived from C57BL/6 or BALB/c mice. The patterns of expression across clusters
of coexpressed genes in a comparison of the 5-ng/ml LPS response in macrophages derived from two different strains of mice—C57BL/6 or
BALB/c.
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an enrichment for Ets2 binding. Other large, up-regulated
gene clusters, especially in the Amit et al. [37] study, showed a
similar profile of transcription factor-binding site enrichment,
albeit without enrichment for some of the factors mentioned
above. Similarly, the largest cluster of down-regulated genes in
both studies (Cluster 1) exhibited an enrichment in binding

sites for Atf3, Cebpb, E2f1, E2f4, Egr1, Ets2, Hif1a, Irf1, Irf4,
Junb, Krox20, Maff, PU.1 (Spi1), Rela, and Runx1, although
no enrichment for Hif1a was observed in the current study.
Again, other down-regulated clusters, especially in the current
study, showed an overlapping profile of motif enrichment but
also with enrichment in a number of other factors, particularly

Figure 7. Expression profiles of six genes in mouse macrophages derived from BALB/c or C57BL/6 bone marrow and treated with 5 ng/ml LPS.
Macrophages were treated with 5 ng/ml LPS, and gene expression was measured at 1, 2, 4, 8, and 24 h pre- or post-treatment (0 h). Shown above are
six example transcripts behaving differentially across macrophages from the different strains, as determined by statistical filtering and manual
inspection of individual profiles. Full gene lists are available at www.macrophages.com/Raza2013-expression-networks and in Supplemental Fig. 2.
Some transcripts are expressed in one strain (or the other) regardless of LPS treatment, although LPS treatment may alter their expression
over time.
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early response genes, including as Fos, Jun, Junb, Rel, as well
as Stat family members 1, 2, and 3 and Nfkb1.

DISCUSSION

The transcriptomic response of mouse macrophages to LPS has
been studied in considerable detail. A recent study by Bhatt
et al. [53] documented the immediately early response to
LPS over the first 2 h in BMDM, separately examining the
events in transcript initiation, elongation, processing, and
polyadenylation. These authors noted that the early response
genes tend to be associated with CpG islands and pre-exist in
open chromatin. By contrast, secondary response genes, many
of which required autocrine IFN signaling via IFNAR1, as
described previously [5, 6], required chromatin remodeling
before transcriptional activation. A similar dichotomy in terms
of the chromatin status of LPS-inducible genes was reported by

Iglesias et al. [54]. Pre-existing chromatin states of genes,
potentially LPS-inducible, depend, at least in part, on the
macrophage-specific transcription factor, PU.1 [55]. Although
endogenous IFN has been firmly implicated in LPS signaling,
no previous study has compared the responses to IFN with LPS
or considered the dose response. Furthermore, most studies
have focused only on early response genes and only on the
C57BL/6 mouse strain. The weakness of the C57BL/6 mouse as
a model for human macrophages has been demonstrated
elsewhere [24], and Wells et al. [23] showed that individual
mouse strains vary widely in their response to LPS. So, it is
legitimate to question to which extent the response of C57BL/6
mice are representative of the responses of the majority of
laboratory mouse strains or of wild-type mice. The IFN-b-, IFN-g-,
and LPS-activated signaling pathways also converge at a num-
ber of levels. Indeed, classical activation of macrophages
is only truly attained by IFN-g exposure, in concert with a

Figure 8. The overlap and divergence in the transcriptional targets of LPS, IFN-b, and IFN-g signaling in mouse BMDMs. (A) Average expression profile
of transcripts within clusters associated with changes across three different treatments in mouse BMDMs. Expression levels are plotted across the
different time-points sampled and the different treatments (IFN-b, IFN-g, and LPS). GO terms associated with each cluster and example genes are shown
to the right of each plot. Cluster 12 represents transcripts expressed to a similar degree regardless of treatment type. Clusters 5 and 9 transcripts are
preferentially expressed in LPS-treated cells. Cluster 10 expression is restricted to/greater in IFN-b-treated cells, whereas Cluster 14 transcript expression
is restricted to IFN-g-treated macrophages. (B) Network showing overlap in the up-regulated transcriptional targets of IFN-b, IFN-g, and LPS in BALB/c-
derived macrophages. The left side shows each stimulus, and the right side displays the transcriptional targets of the stimuli. Some transcripts are specific
to each treatment, whereas others overlap.
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microbial stimulus, such as LPS. The cellular actions of IFNs are
mediated via their regulation of subsets of genes (known as IFN-
stimulated genes). Variance in the type I and type II transcrip-
tional signatures is potentially fundamental in the nonredundant
activities of these cytokines, i.e., where one IFN cannot substitute
for the lack of another, as demonstrated in experimental and
clinical states of infection [20, 21] but to date, has not been
studied in detail. By exploring a much wider set of variables and
analyzing the data, based on a network-clustering approach, we
reveal that LPS-regulated genes can be subdivided into a larger
number of subsets.
One important variable that is not commonly considered in

the actions of LPS on BMDM is the presence of CSF-1. Many
studies do not report whether it is re-added following harvest-
ing. The presence of CSF-1 increases responsiveness to LPS
[33], and some genes are only induced in its presence [41].
Its continued presence also ensures that most BMDMs are in
cell cycle, and LPS causes growth arrest [41]. This study shows
that this is also the case with type I and type II IFN activation.
This impacts upon the nature of the coexpression clusters,
seen when we reiterate the standard model used by others, the
C57BL/6 BMDM. We see a sequential cascade that continues
out to 24 h (Fig. 2). We note the existence of large sets of
down-regulated genes (Clusters 1 and 4), many of which are
known to be associated with the cell cycle.
Previous microarray studies of the LPS response have used a

range doses of LPS and LPS derived from different species of
Gram -ve bacteria [24, 56–58]. The relative dose of endotoxin
is acknowledged to impact on the expression of downstream
targets [12], yet a comprehensive analysis of the dose-dependent
actions of LPS is currently lacking. We found that the
majority (56%) of the LPS-inducible response was positively
correlated with increasing dose. Part of this might be attrib-
uted to the type I response (MyD88-independent pathway), as
the expression of IFN-b was itself dose-responsive (see www.
macrophages.com/Raza2013#LPS-dose), as were many type I
response genes (Fig. 3). Corresponding, nondose-responsive
targets were over-represented among the LPS-specific genes
(MyD88-dependent targets), whereas 75% of genes common
to IFN-b and LPS treatment were dose-responsive. The early
response to LPS, i.e., genes up-regulated by 1 h, comprised a
number of transcripts known to encode transcription factors
or associated with transcriptional regulation (e.g., enhancers),
and a majority (60%) of these were dose-responsive. This was
also true for signaling feedback inhibitors (Socs3, Dusp1/5/8/
10/14), cytokines and their receptors. Regardless of the time-
phase, most cytokines were dose-responsive, with the exception
of Cxcl16 (which was not dose-responsive) and Cxcl2/3 (whose
expression was maximal at the 5-ng/ml dose; Fig. 3), suggest-
ing that the potential to recruit other immune cells increases
at higher LPS dose challenges. This also translates to an in
vivo context, where the host must orchestrate an immune re-
sponse relative to the challenge.
Expression of 250 transcripts (9.5% of up-regulated targets)

was inversely correlated with dose, 71 of which encoded
transmembrane proteins, 25 were associated with the endoplas-
mic reticulum, 13 were solute carrier proteins, and 11 were zinc
finger proteins. The CSF-1R-encoding gene, Csf1r, was among

the inverse-correlated targets, which was maximally induced at
the lowest dose (0.5 ng/ml) but repressed at 50 ng/ml. Some
transcripts, whose expression was inversely correlated with
dose, are targets of CSF-1 signaling. Interestingly, two genes,
expressed to a greater extent at the lowest doses (Gss and
Gsta3), are involved in cellular antioxidant mechanisms and
cellular protection from oxidative damage by free radicals.
Phagocyte-derived reactive oxygen and nitrogen species are
crucial to the antimicrobial response [59]. It is possible that
their enzymatic detoxification is promoted where the bacterial
load is less threatening to the host and may explain the higher
expression of Gss and Gsta3 at the lower doses of LPS in
our data.
It seems likely that differential structural requirements for

the MyD88-dependent and MyD88-independent signaling path-
ways underlie the dose dependence. The absolute requirement
of CD14 for TLR4 signaling varies with dose of LPS [60], and
CD14 is dispensable at higher LPS doses. It has been sug-
gested that TLR4 engagement of downstream adaptor proteins
MyD88 and TLR adaptor molecule 1 (Toll-IL-1R domain-
containing adaptor-inducing IFN-b) depends on the conforma-
tional arrangement of TLR4 [61]. Our own data indicated that
Tollip expression was inversely correlated with dose. Tollip forms
part of the TLR4 receptor signaling complex and has been
shown to regulate the magnitude of proinflammatory cytokine
production to low and physiological concentrations of LPS but
not lethal doses of LPS [62].
C57BL/6 mice are particularly susceptible to experimental

models of organ-specific autoimmune disease [63], whereas
BALB/c are susceptible to Th2-associated fibrotic diseases and
asthma models [64, 65]. The baseline expression of type I IFN
targets was higher in the C57BL/6 strain compared with
BALB/c (Fig. 6), consistent with observations of others [66]. A
second set of genes was expressed selectively in C57BL/6 and
repressed by LPS. It included several genes implicated in
susceptibility to SLE: the C1q subunits [42], Stat4 [44], and
Cd28 [43]. Unabated production of IFN is common in SLE
patients, as is the up-regulation of IFN-stimulated genes in the
PBMCs of patients [67, 68]. Our analysis suggests higher SLE
susceptibility expression in C57BL/6 mice compared with
BALB/c. Aside from genes that were differentially regulated, we
also mined the dataset to identify genes where expression
appeared deleted in one strain versus the other. Sixty-three
of the most compelling examples of strain-specific expression
are shown in Supplemental Fig. 2 and six examples in Fig. 7.
This list of genes, showing null expression in one strain,
included some known examples, as well as others pre-
viously uncharacterized. Known genes that are expressed in
C57BL/6 but are essentially absent in BALB/c include
Nlrp1c and Trim12. Those detected in BALB/c but not
C57BL/6 include Cxcl14, Ctse, Gbp1, Ifi202b, and H2-Ea
(Supplemental Fig. 2). These differences place some limits
on the extent to which either strain can be used as a general
model of mouse immunobiology. For example, the absence
of Ctse and H2-Ea is likely to impact significantly on
antigen presentation and might contribute to a mislead-
ing view of the relative importance of macrophages and
DCs in antigen presentation [69].
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The transcriptional activation profile of mouse BMDMs
treated with IFN-b, IFN-g, and LPS has been studied previously
[10, 39, 40, 70–73], but a direct comparison has not been at-
tempted. We studied the biology in BALB/c mice because of
the basal autocrine IFN stimulation in C57BL/6 confirmed
herein. The inducible transcriptional response was also much
broader and potent (in terms of fold-change induction) in
LPS-treated macrophages compared with those treated with
IFN-b or IFN-g. Among the transcripts induced specifically in
LPS treatment was a cluster of 92 early-response genes, includ-
ing Dusp1/4/5/8/14, regulators of the NF-kB system (Nfkbia/d/z),
transcripts representing microRNAs (Mir17/18/19a/19b1/
221/222/92-1), and the Irf4 (Fig. 8). This cluster of genes is
indicative of negative-feedback control of TLR4-activated path-
ways. Irf4, MAPK phosphatases (Dusp), and certain microRNAs
have been shown to mediate TLR signaling and proinflamma-
tory cytokine production in macrophages [74–76]. Based on
this functional annotation, other coregulated genes within this
cluster may be potential candidates for factors involved in the
(negative) regulation of signaling pathways downstream of
TLR activation. There were a number of other clusters repre-
senting expression restricted to or enriched for LPS treat-
ment (e.g. Clusters 2, 3, and 5; www.macrophages.com/
Raza2013#LPS-vs-interferon). These “LPS-centric” clusters in-
cluded chemokines (Ccl9, Ccl17, Ccl22, Ccl24, Cxcl1, Cxcl16,
Cxcl3, Cxcl2, Cxcl1, Tnf); ILs (Il12a, Il12b, Il17rd, Il18, Il1a,
Il12, Il6); IL receptor subunits (Il17rd, Il20rb, Il2ra); MAPK
signaling components (Map3k10, Mapkapk2, Mapkbp1); mem-
bers of the NF-kB transcription factor family: Bcl3, Rel, Rela,
Relb; type I IFN signaling (Ifnb1, Ifnar1); Csf-1; and eight
transcripts encoding zinc finger proteins. These observations
fit with the literature, as LPS is known to induce CSF-1 in
macrophages [77], and a number of zinc finger proteins
have been found to regulate proinflammatory activation in
macrophages [78]. Other genes characteristic of classical
macrophage activation were also within LPS centric clusters:
Nos2, Ccl5, and Ccr7 [79].
Common to all three treatments was the repression of genes

associated with cell cycle (Cluster 1). These genes were
repressed, to a greater extent, in LPS treatment compared with
cells treated with IFN-b or IFN-g. Transcripts induced to
a similar extent in all three treatments included the transcrip-
tion factors Stat1, Stat3, and Irf5, as well as GBPs (Gbp1/2/6/9).
High Irf5 expression has been suggested as being characteristic
of M1 macrophages [80], and Stat1 is required for executing
type I and type II IFN signaling, as well as LPS-induced gene
expression [17]. The response to IFN-b and LPS was more
overlapping than that of LPS and IFN-g. Genes shared by LPS
and IFN-b were predominantly type I IFN targets (Ifi202b/204/
205/35/44, Ifit2/3, Ifih1, Oas1a/1b/1g, Oas2/l1/l2, Mx1). There
were also transcripts (Cluster 34), expressed specifically in IFN-g
or LPS treatment but not IFN-b treatment, such as MHC class
II antigens (Cd74, H2-Aa, H2-Ab1, H2-Ea) or related proteins
(for example, Ctsh, which encodes a lysosomal cysteine pro-
teinase required for degradation of lysosomal proteins).
Therefore, this dataset presents a number of MHC class II
candidates, induced (at the message level, at least) by LPS in
mouse BMDMs, independently of IFN-g.

Cluster 14 (45 transcripts) represented transcripts whose
expression was specific to IFN-g-treated cells and included the
MHC class II-related transcripts: H2-DMa, H2-DMb2, H2-Eb1,
Ciita, as well as the transcripts encoding complement compo-
nents: C1qb, C1qc, C1qa, C4b (expressed constitutively in
C57BL/6). The full spectrum of classical activation of macro-
phages is thought to be induced by IFN-g in concert with
a microbial stimulus, such as LPS [17]. Two clusters (Clusters
10 and 36) comprised transcripts whose expression was mostly
restricted to IFN-b treatment. Functional annotation of these
IFN-b-enriched clusters was poor. Some of the most IFN-b-
specific transcripts included Casp2, which was induced as early
as 1 h by IFN-b, yet repressed in response to LPS treatment. The
LPS response is known to possess an antiapoptotic component
[81], and the repression of Casp2 could be an example of an
antiapoptotic mechanism used in macrophages in response to
endotoxin. Hence, there is a level of intersection between the
MyD88-dependent and MyD88-independent pathways that
means that the LPS response is not simply the sum of the two
responses. The difference between the type I and type II
transcriptional signatures reflects the distinct signaling path-
ways and the fact that they have nonredundant biological
functions [20, 21].
The literature on macrophage “activation” has been strongly

influenced by the concept of M1 (classical) and M2 (alterna-
tive) activation [82], although others have preferred the
concept of continuum of states [83]. The data herein show that
the classical response depends on mouse strain, dose, and
nature of agonist. We have included CSF-1, as it is present
constitutively in vivo, but this is also an important regulator
[33]. The differences between the two mouse strains include
genes that are completely undetectable in a strain-specific
manner, as well as major regulatory differences. These differ-
ences are not unique to the mouse strains chosen; an earlier
study revealed substantive differences in the DBA/2 and C3H
strains [23]. The complete sequencing of 17 common inbred
strains [84] reveals very large differences between the strains,
including ;85 acquired stop codons/strain, substantial seg-
ments that cannot be mapped to the C57BL/6 reference, and
documented allele-specific transcription in 12% of genes in an
F1 cross between two strains. Not surprisingly, the differences
are even greater between inbred and wild-type-derived strains.
Aside from genetic background, the in vitro models, looking at
one factor, neglect the complex cytokine milieu within an
inflammatory site, which itself changes with time, and the
distinct set of regulatory pathways generated in response to
different pathogen-associated molecules.
To compare the current study with those that have gone

before it, we reanalyzed the data generated by Amit et al.
[37], describing the transcriptional response of BMDCs to
five TLR agonists at nine time-points following stimulation.
Both datasets were generated on monocyte-derived cells.
The current study used CSF-1 to differentiate the cells to
“BMDM” cells, whereas the Amit et al. [37] study used CSF-2
to generate “BMDC”; however, the overall expression profiles
of these cells have been shown to be similar [32]. The
microarray platforms used were also different, as was the
experimental design of both studies. Despite these differences,
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the overlap in the genes induced or repressed in the two studies
was considerable. We went on to show that the enrichment of
known transcription factor-binding sites (as defined by Garber
et al. [38]) in the expression analyses was similar in the main
clusters of genes up- as well as down-regulated. One notable
exception was the enrichment of motifs for a number of early
response genes, including as Fos, Jun, Junb, Rel, as well as Stat
family members 1, 2, and 3 and Nfkb1 in the down-regulated
clusters observed here. One explanation for this observation is
that the BMDMs used in this study were actively proliferating,
and genes associated with the cell cycle were strongly down-
regulated by LPS and type I and type II IFN. In contrast, cell-cycle
genes were not expressed or were expressed at very low levels in
the Amit et al. [37] data and therefore, not down-regulated
during activation. In summary, each gene has its own unique
promoter, and each individual animal or human produces
a unique response to a unique stimulus. Models need to be
interpreted and generalized with caution.
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