233 research outputs found

    Interspecific variations in the gastrointestinal microbiota in penguins

    Get PDF
    Despite the enormous amount of data available on the importance of the gastrointestinal (GI) microbiota in vertebrate (especially mammals), information on the GI microbiota of seabirds remains incomplete. As with many seabirds, penguins have a unique digestive physiology that enables them to store large reserves of adipose tissue, protein, and lipids. This study used quantitative real-time polymerase chain reaction (qPCR) and 16S rRNA gene pyrosequencing to characterize the interspecific variations of the GI microbiota of four penguin species: the king, gentoo, macaroni, and little penguin. The qPCR results indicated that there were significant differences in the abundance of the major phyla Firmicutes, Bacteroides, Actinobacteria, and Proteobacteria. A total of 132,340, 18,336, 6324, and 4826 near full-length 16S rRNA gene sequences were amplified from fecal samples collected from king, gentoo, macaroni, and little penguins, respectively. A total of 13 phyla were identified with Firmicutes, Bacteroidetes, Proteobacteria, and Fusobacteria dominating the composition; however, there were major differences in the relative abundance of the phyla. In addition, this study documented the presence of known human pathogens, such as Campylobacter, Helicobacter, Prevotella, Veillonella, Erysipelotrichaceae, Neisseria, and Mycoplasma. However, their role in disease in penguins remains unknown. To our knowledge, this is the first study to provide an in-depth investigation of the GI microbiota of penguins.<br /

    Type of intrinsic resistant starch type 3 determines in vitro fermentation by pooled adult faecal inoculum

    Get PDF
    Resistant starch (RS) results in relatively high health-beneficial butyrate levels upon fermentation by gut microbiota. We studied how physico-chemical characteristics of RS-3 influenced butyrate production during fermentation. Six highly resistant RS-3 substrates (intrinsic RS-3, 80-95 % RS) differing in chain length (DPn 16-76), Mw distribution (PI) and crystal type (A/B) were fermented in vitro by pooled adult faecal inoculum. All intrinsic RS-3 substrates were fermented to relatively high butyrate levels (acetate/butyrate ≤ 2.5), and especially fermentation of A-type RS-3 prepared from polydisperse α-1,4 glucans resulted in the highest relative butyrate amount produced (acetate/butyrate: 1). Analysis of the microbiota composition after fermentation revealed that intrinsic RS-3 stimulated primarily Lachnospiraceae, Bifidobacterium and Ruminococcus, but the relative abundances of these taxa differed slightly depending on the RS-3 physico-chemical characteristics. Especially intrinsic RS-3 of narrow disperse Mw distribution stimulated relatively more Ruminococcus. Selected RS fractions (polydisperse Mw distribution) obtained after pre-digestion were fermented to acetate and butyrate (ratio ≤ 1.8) and stimulated Lachnospiraceae and Bifidobacterium. This study indicates that especially the α-1,4 glucan Mw distribution dependent microstructure of RS-3 influences butyrate production and microbiota composition during RS-3 fermentation.</p

    Reduction of colonic inflammation in HLA-B27 transgenic rats by feeding Marie Ménard apples, rich in polyphenols

    Get PDF
    Inflammatory bowel diseases (IBD) are immunomediated ailments affecting millions of individuals. Although diet is regarded as an important factor influencing IBD, there are no accepted dietary recommendations presently available. We administered 7.6 % lyophilised apples obtained from two cultivars (Golden Delicious and Marie Ménard, low and high in polyphenols, respectively) to HLA-B27 transgenic rats which develop spontaneous IBD. After 3 months feeding, rats fed Marie Ménard apples had reduced myeloperoxidase activity (3.6 (sem 0.3) v. 2.2 (sem 0.2) U/g tissue; P <0.05) and reduced cyclo-oxygenase-2 (P <0.05) and inducible NO synthase gene expression (P <0.01) in the colon mucosa and significantly less diarrhoea (P <0.05), compared with control rats. Cell proliferation in the colon mucosa was reduced significantly by feeding Golden Delicious apples, with a borderline effect of Marie Ménard apples. Gene expression profiling of the colon mucosa, analysed using the Whole Rat Genome 4 x 44 K Agilent Arrays, revealed a down-regulation of the pathways of PG synthesis, mitogen-activated protein kinase (MAPK) signalling and TNFalpha-NF-kappaB in Marie Ménard-fed rats. In the stools of the animals of this group we also measured a significant reduction of bacteria of the Bacteriodes fragilis group. In conclusion, the administration of Marie Ménard apples, rich in polyphenols and used at present only in the manufacturing of cider, ameliorates colon inflammation in transgenic rats developing spontaneous intestinal inflammation, suggesting the possible use of these and other apple varieties to control inflammation in IBD patient

    Effect of wheat bran derived prebiotic supplementation on gastrointestinal transit, gut microbiota, and metabolic health: a randomized controlled trial in healthy adults with a slow gut transit

    Get PDF
    Acute intake of the wheat bran extract Arabinoxylan-Oligosaccharide (AXOS) modulates the gut microbiota, improves stool characteristics and postprandial glycemia in healthy humans. Yet, little is known on how long-term AXOS intake influences gastrointestinal (GI) functioning, gut microbiota, and metabolic health. In this randomized, placebo-controlled, double-blind study, we evaluated the effects of AXOS intake on GI function and metabolic health in adults with slow GI transit without constipation. Forty-eight normoglycemic adults were included with whole-gut transit time (WGTT) of >35 h receiving either 15 g/day AXOS or placebo (maltodextrin) for 12-wks. The primary outcome was WGTT, and secondary outcomes included stool parameters, gut permeability, short-chain fatty acids (SCFA), microbiota composition, energy expenditure, substrate oxidation, glucose, insulin, lipids, gut hormones, and adipose tissue (AT) function. WGTT was unchanged, but stool consistency softened after AXOS. 12-wks of AXOS intake significantly changed the microbiota by increasing Bifidobacterium and decreasing microbial alpha-diversity. With a good classification accuracy, overall microbiota composition classified responders with decreased WGTT after AXOS. The incretin hormone Glucagon-like protein 1 was reduced after AXOS compared to placebo. Energy expenditure, plasma metabolites, AT parameters, SCFA, and gut permeability were unchanged. In conclusion, intake of wheat bran extract increases fecal Bifidobacterium and softens stool consistency without major effects on energy metabolism in healthy humans with a slow GI transit. We show that overall gut microbiota classified responders with decreased WGTT after AXOS highlighting that GI transit and change thereof were associated with gut microbiota independent of Bifidobacterium. NCT02491125.</p

    The level and distribution of methyl-esters influence the impact of pectin on intestinal T cells, microbiota, and Ahr activation

    Get PDF
    Pectins are dietary fibres that modulate T cell immunity, microbiota composition, and fermentation profiles, but how this is influenced by the degree of methyl-esterification (DM) and degree-of-blockiness (DB) of pectin is unknown. Here, we demonstrate that supplementation of DM19(high-DB), DM49(low-DB) and DM43(high-DB) pectins at a low dose increased the frequencies of intestinal T-helper (Th)1 and Th2 cells after 1 week of pectin supplementation in mice, whereas DM18(low-DB) did not. After 4 weeks of supplementation with those pectins, Th1 and Th2 frequencies returned to control levels, whereas Rorγt+ regulatory T-cell frequencies increased. These structure-dependent effects could derive from induced shifts in microbiota composition that differed between DM18(low-DB) pectin and the other pectins. T-cell-modulating effects were not short-chain-fatty acid-dependent, but rather through an increase in Aryl-hydrocarbon-receptor-activating components. Thus, pectins with a specific combination of DM and DB have an impact on intestinal T cell-immunity in mice, when supplemented at a low dose

    Development of the preterm gut microbiome in twins at risk of necrotising enterocolitis and sepsis

    Get PDF
    The preterm gut microbiome is a complex dynamic community influenced by genetic and environmental factors and is implicated in the pathogenesis of necrotising enterocolitis (NEC) and sepsis. We aimed to explore the longitudinal development of the gut microbiome in preterm twins to determine how shared environmental and genetic factors may influence temporal changes and compared this to the expressed breast milk (EBM) microbiome. Stool samples (n = 173) from 27 infants (12 twin pairs and 1 triplet set) and EBM (n = 18) from 4 mothers were collected longitudinally. All samples underwent PCR-DGGE (denaturing gradient gel electrophoresis) analysis and a selected subset underwent 454 pyrosequencing. Stool and EBM shared a core microbiome dominated by Enterobacteriaceae, Enterococcaceae, and Staphylococcaceae. The gut microbiome showed greater similarity between siblings compared to unrelated individuals. Pyrosequencing revealed a reduction in diversity and increasing dominance of Escherichia sp. preceding NEC that was not observed in the healthy twin. Antibiotic treatment had a substantial effect on the gut microbiome, reducing Escherichia sp. and increasing other Enterobacteriaceae. This study demonstrates related preterm twins share similar gut microbiome development, even within the complex environment of neonatal intensive care. This is likely a result of shared genetic and immunomodulatory factors as well as exposure to the same maternal microbiome during birth, skin contact and exposure to EBM. Environmental factors including antibiotic exposure and feeding are additional significant determinants of community structure, regardless of host genetics

    PCR-TTGE Analysis of 16S rRNA from Rainbow Trout (Oncorhynchus mykiss) Gut Microbiota Reveals Host-Specific Communities of Active Bacteria

    Get PDF
    This study assessed the relative contributions of host genetics and diet in shaping the gut microbiota of rainbow trout. Full sibling fish from four unrelated families, each consisting of individuals derived from the mating of one male and one female belonging to a breeding program, were fed diets containing either vegetable proteins or vegetable oils for two months in comparison to a control diet consisting of only fish protein and fish oil. Two parallel approaches were applied on the same samples: transcriptionally active bacterial populations were examined based on RNA analysis and were compared with bacterial populations obtained from DNA analysis. Comparison of temporal temperature gradient gel electrophoresis (TTGE) profiles from DNA and RNA showed important differences, indicating that active bacterial populations were better described by RNA analysis. Results showed that some bacterial groups were significantly (P<0.05) associated with specific families, indicating that microbiota composition may be influenced by the host. In addition, the effect of diet on microbiota composition was dependent on the trout family

    Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition

    Get PDF
    The intestinal microbiota has been implicated in insulin resistance, although evidence regarding causality in humans is scarce. We therefore studied the effect of lean donor (allogenic) versus own (autologous) fecal microbiota transplantation (FMT) to male recipients with the metabolic syndrome. Whereas we did not observe metabolic changes at 18 weeks after FMT, insulin sensitivity at 6 weeks after allogenic FMT was significantly improved, accompanied by altered microbiota composition. We also observed changes in plasma metabolites such as gamma-aminobutyric acid and show that metabolic response upon allogenic FMT (defined as improved insulin sensitivity 6 weeks after FMT) is dependent on decreased fecal microbial diversity at baseline. In conclusion, the beneficial effects of lean donor FMT on glucose metabolism are associated with changes in intestinal microbiota and plasma metabolites and can be predicted based on baseline fecal microbiota composition.Peer reviewe
    corecore