37 research outputs found

    Depigmented-polymerised allergoids favour regulatory over effector T cells:enhancement by 1α, 25-dihydroxyvitamin D3

    Get PDF
    BACKGROUND: Allergen immunotherapy (SIT) is the only treatment for allergic disease capable of modifying disease long term. To reduce the risk of anaphylaxis from SIT, allergen-extracts have been modified by polymerisation with glutaraldehyde to reduce IgE binding. It is suggested that these allergoid extracts also have reduced T cell activity, which could compromise clinical efficacy. Effective SIT is thought to act through regulatory T cells (Tregs) rather than activation of effector T cells. There is no published data on the activity of modified extracts on Tregs. RESULTS: We compared the capacity of modified (depigmented-polymerised) versus unmodified (native) allergen extracts of grass pollen and house dust mite to stimulate proliferation/cytokine production and to modulate Treg/effector T cell frequency in cultures of peripheral blood mononuclear cells (PBMC), from volunteers sensitised to both allergens in vitro. Depigmented-polymerised allergen extracts stimulated less proliferation of PBMC, and reduced effector cell numbers after 7 days in culture than did native extracts. However, the frequency of Foxp3+ Tregs in cultures were similar to those seen with native extract so that ratios of regulatory to effector T cells were significantly increased in cultures stimulated with depigmented-polymerised extracts. Addition of 1α, 25-dihydroxyvitamin D3 further favoured Treg, and reduced effector cytokine production, but not interleukin-10. CONCLUSIONS: Depigmented-polymerised allergen extracts appear to favour Treg expansion over activation of effector T cells and this may relate to their demonstrated efficacy and safety in SIT. 1α, 25-dihydroxyvitamin D3 further reduces effector T cell activation by allergen extracts and may be a useful adjuvant for SIT

    1α,25-dihydroxyvitamin D3 promotes CD200 expression by human peripheral and airway-resident T cells

    No full text
    BACKGROUND: CD200, a cell-surface immunoglobulin-like molecule expressed by immune and stromal cells, dampens the pro-inflammatory activity of tissue-resident innate cells via its receptor, CD200R. This interaction appears critical for peripheral immune tolerance, particularly in the airways where excessive inflammation is undesirable. Vitamin D contributes to pulmonary health and promotes regulatory immune pathways, therefore its influence on CD200 and CD200R was investigated. METHODS: CD200 and CD200R expression were assessed by qPCR and immunoreactivity of human lymphoid, myeloid and epithelial cells following 1α,25-dihydroxyvitamin D3 (1α,25VitD3) exposure in vitro and in peripheral T cells following 1α,25VitD3 oral ingestion in vivo. The effect of 1α25VitD3 was also assessed in human airway-resident cells. RESULTS: 1α25VitD3 potently upregulated CD200 on peripheral human CD4+ T cells in vitro, and in vivo there was a trend towards upregulation in healthy, but not asthmatic individuals. CD200R expression was not modulated in any cells studied. CD200 induction was observed to a lesser extent in CD8+ T cells and not in B cells or airway epithelium. T cells isolated from the human airway also responded strongly to 1α25VitD3 to upregulate CD200. CONCLUSIONS: The capacity of 1α,25-dihydroxyvitamin D3 to induce CD200 expression by peripheral and respiratory tract T cells identifies an additional pathway via which vitamin D can restrain inflammation in the airways to maintain respiratory health
    corecore