7 research outputs found

    Synoviocyte-targeted therapy synergizes with TNF inhibition in arthritis reversal

    Get PDF
    Fibroblast-like synoviocytes (FLS) are joint-lining cells that promote rheumatoid arthritis (RA) pathology. Current disease-modifying antirheumatic agents (DMARDs) operate through systemic immunosuppression. FLS-targeted approaches could potentially be combined with DMARDs to improve control of RA without increasing immunosuppression. Here, we assessed the potential of immunoglobulin-like domains 1 and 2 (Ig1&2), a decoy protein that activates the receptor tyrosine phosphatase sigma (PTPRS) on FLS, for RA therapy. We report that PTPRS expression is enriched in synovial lining RA FLS and that Ig1&2 reduces migration of RA but not osteoarthritis FLS. Administration of an Fc-fusion Ig1&2 attenuated arthritis in mice without affecting innate or adaptive immunity. Furthermore, PTPRS was down-regulated in FLS by tumor necrosis factor (TNF) via a phosphatidylinositol 3-kinase–mediated pathway, and TNF inhibition enhanced PTPRS expression in arthritic joints. Combination of ineffective doses of TNF inhibitor and Fc-Ig1&2 reversed arthritis in mice, providing an example of synergy between FLS-targeted and immunosuppressive DMARD therapies.publishedVersio

    Association of kidney disease measures with risk of renal function worsening in patients with type 1 diabetes

    Get PDF
    Background: Albuminuria has been classically considered a marker of kidney damage progression in diabetic patients and it is routinely assessed to monitor kidney function. However, the role of a mild GFR reduction on the development of stage 653 CKD has been less explored in type 1 diabetes mellitus (T1DM) patients. Aim of the present study was to evaluate the prognostic role of kidney disease measures, namely albuminuria and reduced GFR, on the development of stage 653 CKD in a large cohort of patients affected by T1DM. Methods: A total of 4284 patients affected by T1DM followed-up at 76 diabetes centers participating to the Italian Association of Clinical Diabetologists (Associazione Medici Diabetologi, AMD) initiative constitutes the study population. Urinary albumin excretion (ACR) and estimated GFR (eGFR) were retrieved and analyzed. The incidence of stage 653 CKD (eGFR < 60 mL/min/1.73 m2) or eGFR reduction > 30% from baseline was evaluated. Results: The mean estimated GFR was 98 \ub1 17 mL/min/1.73m2 and the proportion of patients with albuminuria was 15.3% (n = 654) at baseline. About 8% (n = 337) of patients developed one of the two renal endpoints during the 4-year follow-up period. Age, albuminuria (micro or macro) and baseline eGFR < 90 ml/min/m2 were independent risk factors for stage 653 CKD and renal function worsening. When compared to patients with eGFR > 90 ml/min/1.73m2 and normoalbuminuria, those with albuminuria at baseline had a 1.69 greater risk of reaching stage 3 CKD, while patients with mild eGFR reduction (i.e. eGFR between 90 and 60 mL/min/1.73 m2) show a 3.81 greater risk that rose to 8.24 for those patients with albuminuria and mild eGFR reduction at baseline. Conclusions: Albuminuria and eGFR reduction represent independent risk factors for incident stage 653 CKD in T1DM patients. The simultaneous occurrence of reduced eGFR and albuminuria have a synergistic effect on renal function worsening

    PTPN2 links colonic and joint inflammation in experimental autoimmune arthritis

    No full text
    Loss-of-function variants of protein tyrosine phosphatase non-receptor type 2 (PTPN2) enhance risk of inflammatory bowel disease and rheumatoid arthritis; however, whether the association between PTPN2 and autoimmune arthritis depends on gut inflammation is unknown. Here we demonstrate that induction of subclinical intestinal inflammation exacerbates development of autoimmune arthritis in SKG mice. Ptpn2-haploinsufficient SKG mice — modeling human carriers of disease-associated variants of PTPN2 — displayed enhanced colitis-induced arthritis and joint accumulation of Tregs expressing RAR-related orphan receptor γT (RORγt) — a gut-enriched Treg subset that can undergo conversion into FoxP3–IL-17+ arthritogenic exTregs. SKG colonic Tregs underwent higher conversion into arthritogenic exTregs when compared with peripheral Tregs, which was exacerbated by haploinsufficiency of Ptpn2. Ptpn2 haploinsufficiency led to selective joint accumulation of RORγt-expressing Tregs expressing the colonic marker G protein–coupled receptor 15 (GPR15) in arthritic mice and selectively enhanced conversion of GPR15+ Tregs into exTregs in vitro and in vivo. Inducible Treg-specific haploinsufficiency of Ptpn2 enhanced colitis-induced SKG arthritis and led to specific joint accumulation of GPR15+ exTregs. Our data validate the SKG model for studies at the interface between intestinal and joint inflammation and suggest that arthritogenic variants of PTPN2 amplify the link between gut inflammation and arthritis through conversion of colonic Tregs into exTregs

    Lateral dimension and amino-functionalization on the balance to assess the single-cell toxicity of graphene on fifteen immune cell types

    No full text
    International audienceGiven the wide variety of potential applications of graphene oxide (GO), its consequent release into the environment poses serious concerns on its safety. The future production and exploitation of graphene in the years to come should be guided by its specific chemical-physical characteristics. The unparalleled potential of single-cell mass cytometry (CyTOF) to dissect by high-dimensionality the specific immunological effects of nanomaterials, represents a turning point in nanotoxicology. It helps us to identify the safe graphene in terms of physical-chemical properties and therefore to direct its future safe production.Here we present a high-dimensional study to evaluate two historically indicated as key parameters for the safe exploitation: functionalization and dimension. The role of lateral dimension and the amino-functionalization of GO on their immune impact were here evaluated as synergistic players. To this end, we dissected the effects of GO, characterized by a large or small lateral size (GO 1.32 μm and GO 0.13 μm, respectively), and its amino-functionalized counterpart (GONH2 1.32 μm and GONH2 0.13 μm, respectively) on fifteen cell types of human primary peripheral blood mononuclear cells (PBMCs).We describe how the smallest later size not only evokes pronounced toxicity on the pool of PBMCs compared to larger GOs but also towards the distinct immune cell subpopulations, in particular on non-classical monocytes, plasmacytoid dendritic cells (pDCs), natural killer cells (NKs) and B cells. The amino-functionalization was able to improve the biocompatibility of classical and non-classical monocytes, pDCs, NKs, and B cells. Detailed single-cell analysis further revealed a complex interaction of all GOs with the immune cells, and in particular monocyte subpopulations, with different potency depending on their physicochemical properties. Overall, by high-dimensional profiling, our study demonstrates that the lateral dimension is an important factor modulating immune cells and specifically monocyte activation, but a proper surface functionalization is the dominant characteristic in its immune effects. In particular, the amino-functionalization can critically modify graphene impact dampening the immune cell activation. Our study can serve as a guide for the future broad production and use of graphene in our everyday life

    Synoviocyte-targeted therapy synergizes with TNF inhibition in arthritis reversal

    No full text
    Fibroblast-like synoviocytes (FLS) are joint-lining cells that promote rheumatoid arthritis (RA) pathology. Current disease-modifying antirheumatic agents (DMARDs) operate through systemic immunosuppression. FLS-targeted approaches could potentially be combined with DMARDs to improve control of RA without increasing immunosuppression. Here, we assessed the potential of immunoglobulin-like domains 1 and 2 (Ig1&2), a decoy protein that activates the receptor tyrosine phosphatase sigma (PTPRS) on FLS, for RA therapy. We report that PTPRS expression is enriched in synovial lining RA FLS and that Ig1&2 reduces migration of RA but not osteoarthritis FLS. Administration of an Fc-fusion Ig1&2 attenuated arthritis in mice without affecting innate or adaptive immunity. Furthermore, PTPRS was down-regulated in FLS by tumor necrosis factor (TNF) via a phosphatidylinositol 3-kinase–mediated pathway, and TNF inhibition enhanced PTPRS expression in arthritic joints. Combination of ineffective doses of TNF inhibitor and Fc-Ig1&2 reversed arthritis in mice, providing an example of synergy between FLS-targeted and immunosuppressive DMARD therapies
    corecore