104 research outputs found

    Identification and Characterization of Mediators of Fluconazole Tolerance in Candida albicans.

    Get PDF
    Candida albicans is an important human pathogen and a major concern in intensive care units around the world. C. albicans infections are associated with a high mortality despite the use of antifungal treatments. One of the causes of therapeutic failures is the acquisition of antifungal resistance by mutations in the C. albicans genome. Fluconazole (FLC) is one of the most widely used antifungal and mechanisms of FLC resistance occurring by mutations have been extensively investigated. However, some clinical isolates are known to be able to survive at high FLC concentrations without acquiring resistance mutations, a phenotype known as tolerance. Mechanisms behind FLC tolerance are not well studied, mainly due to the lack of a proper way to identify and quantify tolerance in clinical isolates. We proposed here culture conditions to investigate FLC tolerance as well as an easy and efficient method to identity and quantify tolerance to FLC. The screening of C. albicans strain collections revealed that FLC tolerance is pH- and strain-dependent, suggesting the involvement of multiple mechanisms. Here, we addressed the identification of FLC tolerance mediators in C. albicans by an overexpression strategy focusing on 572 C. albicans genes. This strategy led to the identification of two transcription factors, CRZ1 and GZF3. CRZ1 is a C2H2-type transcription factor that is part of the calcineurin-dependent pathway in C. albicans, while GZF3 is a GATA-type transcription factor of unknown function in C. albicans. Overexpression of each gene resulted in an increase of FLC tolerance, however, only the deletion of CRZ1 in clinical FLC-tolerant strains consistently decreased their FLC tolerance. Transcription profiling of clinical isolates with variable levels of FLC tolerance confirmed a calcineurin-dependent signature in these isolates when exposed to FLC

    Escherichia coli Nissle 1917 Antagonizes Candida albicans Growth and Protects Intestinal Cells from C. albicans -Mediated Damage

    Get PDF
    Candida albicans is a pathobiont of the gastrointestinal tract. It can contribute to the diversity of the gut microbiome without causing harmful effects. When the immune system is compromised, C. albicans can damage intestinal cells and cause invasive disease. We hypothesize that a therapeutic approach against C. albicans infections can rely on the antimicrobial properties of probiotic bacteria. We investigated the impact of the probiotic strain Escherichia coli Nissle 1917 (EcN) on C. albicans growth and its ability to cause damage to intestinal cells. In co-culture kinetic assays, C. albicans abundance gradually decreased over time compared with C. albicans abundance in the absence of EcN. Quantification of C. albicans survival suggests that EcN exerts a fungicidal activity. Cell-free supernatants (CFS) collected from C. albicans -EcN co-culture mildly altered C. albicans growth, suggesting the involvement of an EcN-released compound. Using a model of co-culture in the presence of human intestinal epithelial cells, we further show that EcN prevents C. albicans from damaging enterocytes both distantly and through direct contact. Consistently, both C. albicans ’s filamentous growth and microcolony formation were altered by EcN. Taken together, our study proposes that probiotic-strain EcN can be exploited for future therapeutic approaches against C. albicans infections

    Prediction of Phenotype-Associated Genes via a Cellular Network Approach: A Candida albicans Infection Case Study

    Get PDF
    Candida albicans is the most prevalent opportunistic fungal pathogen in humans causing superficial and serious systemic infections. The infection process can be divided into three stages: adhesion, invasion, and host cell damage. To enhance our understanding of these C. albicans infection stages, this study aimed to predict phenotype-associated genes involved during these three infection stages and their roles in C. albicans–host interactions. In light of the principles that proteins that lie closer to one another in a protein interaction network are more likely to have similar functions, and that genes regulated by the same transcription factors tend to have similar functions, a cellular network approach was proposed to predict the phenotype-associated genes in this study. A total of 4, 12, and 3 genes were predicted as adhesion-, invasion-, and damage-associated genes during C. albicans infection, respectively. These predicted genes highlight the facts that cell surface components are critical for cell adhesion, and that morphogenesis is crucial for cell invasion. In addition, they provide targets for further investigations into the mechanisms of the three C. albicans infection stages. These results give insights into the responses elicited in C. albicans during interaction with the host, possibly instrumental in identifying novel therapies to treat C. albicans infection

    A Human-Curated Annotation of the Candida albicans Genome

    Get PDF
    Recent sequencing and assembly of the genome for the fungal pathogen Candida albicans used simple automated procedures for the identification of putative genes. We have reviewed the entire assembly, both by hand and with additional bioinformatic resources, to accurately map and describe 6,354 genes and to identify 246 genes whose original database entries contained sequencing errors (or possibly mutations) that affect their reading frame. Comparison with other fungal genomes permitted the identification of numerous fungus-specific genes that might be targeted for antifungal therapy. We also observed that, compared to other fungi, the protein-coding sequences in the C. albicans genome are especially rich in short sequence repeats. Finally, our improved annotation permitted a detailed analysis of several multigene families, and comparative genomic studies showed that C. albicans has a far greater catabolic range, encoding respiratory Complex 1, several novel oxidoreductases and ketone body degrading enzymes, malonyl-CoA and enoyl-CoA carriers, several novel amino acid degrading enzymes, a variety of secreted catabolic lipases and proteases, and numerous transporters to assimilate the resulting nutrients. The results of these efforts will ensure that the Candida research community has uniform and comprehensive genomic information for medical research as well as for future diagnostic and therapeutic applications

    The bZIP Transcription Factor Rca1p Is a Central Regulator of a Novel CO2 Sensing Pathway in Yeast

    Get PDF
    Like many organisms the fungal pathogen Candida albicans senses changes in the environmental CO2 concentration. This response involves two major proteins: adenylyl cyclase and carbonic anhydrase (CA). Here, we demonstrate that CA expression is tightly controlled by the availability of CO2 and identify the bZIP transcription factor Rca1p as the first CO2 regulator of CA expression in yeast. We show that Rca1p upregulates CA expression during contact with mammalian phagocytes and demonstrate that serine 124 is critical for Rca1p signaling, which occurs independently of adenylyl cyclase. ChIP-chip analysis and the identification of Rca1p orthologs in the model yeast Saccharomyces cerevisiae (Cst6p) point to the broad significance of this novel pathway in fungi. By using advanced microscopy we visualize for the first time the impact of CO2 build-up on gene expression in entire fungal populations with an exceptional level of detail. Our results present the bZIP protein Rca1p as the first fungal regulator of carbonic anhydrase, and reveal the existence of an adenylyl cyclase independent CO2 sensing pathway in yeast. Rca1p appears to regulate cellular metabolism in response to CO2 availability in environments as diverse as the phagosome, yeast communities or liquid culture

    Loss of C-5 Sterol Desaturase Activity Results in Increased Resistance to Azole and Echinocandin Antifungals in a Clinical Isolate of Candida parapsilosis

    Get PDF
    Among emerging non-albicans Candida species, Candida parapsilosis is of particular concern as a cause of nosocomial bloodstream infections in neonatal and intensive care unit patients. While fluconazole and echinocandins are considered effective treatments for such infections, recent reports of fluconazole and echinocandin resistance in C. parapsilosis indicate a growing problem. The present study describes a novel mechanism of antifungal resistance in this organism affecting susceptibility to azole and echinocandin antifungals in a clinical isolate obtained from a patient with prosthetic valve endocarditis. Transcriptome analysis indicated differential expression of several genes in the resistant isolate, including upregulation of ergosterol biosynthesis pathway genes ERG2, ERG5, ERG6, ERG11, ERG24, ERG25, and UPC2. Whole-genome sequencing revealed that the resistant isolate possessed an ERG3 mutation resulting in a G111R amino acid substitution. Sterol profiles indicated a reduction in sterol desaturase activity as a result of this mutation. Replacement of both mutant alleles in the resistant isolate with the susceptible isolate's allele restored wild-type susceptibility to all azoles and echinocandins tested. Disruption of ERG3 in the susceptible and resistant isolates resulted in a loss of sterol desaturase activity, high-level azole resistance, and an echinocandin-intermediate to -resistant phenotype. While disruption of ERG3 in C. albicans resulted in azole resistance, echinocandin MICs, while elevated, remained within the susceptible range. This work demonstrates that the G111R substitution in Erg3 is wholly responsible for the altered azole and echinocandin susceptibilities observed in this C. parapsilosis isolate and is the first report of an ERG3 mutation influencing susceptibility to the echinocandins

    Retrotransposons as a Source of DNA Damage in Neurodegeneration

    No full text
    International audienceThe etiology of aging-associated neurodegenerative diseases (NDs), such as Parkinson's disease (PD) and Alzheimer's disease (AD), still remains elusive and no curative treatment is available. Age is the major risk factor for PD and AD, but the molecular link between aging and neurodegeneration is not fully understood. Aging is defined by several hallmarks, some of which partially overlap with pathways implicated in NDs. Recent evidence suggests that aging-associated epigenetic alterations can lead to the derepression of the LINE-1 (Long Interspersed Element-1) family of transposable elements (TEs) and that this derepression might have important implications in the pathogenesis of NDs. Almost half of the human DNA is composed of repetitive sequences derived from TEs and TE mobility participated in shaping the mammalian genomes during evolution. Although most TEs are mutated and no longer mobile, more than 100 LINE-1 elements have retained their full coding potential in humans and are thus retrotransposition competent. Uncontrolled activation of TEs has now been reported in various models of neurodegeneration and in diseased human brain tissues. We will discuss in this review the potential contribution of LINE-1 elements in inducing DNA damage and genomic instability, which are emerging pathological features in NDs. TEs might represent an important molecular link between aging and neurodegeneration, and a potential target for urgently needed novel therapeutic disease-modifying interventions

    ZnO Thin Films Synthesized by Sol-Gel Process for Photonic Applications

    No full text
    Undoped and aluminum-doped ZnO thin films are prepared by the sol-gel process. Zinc acetate dihydrate, ethanol and monoethanolamine are used as precursor, solvent and stabilizer, respectively. In the case of Al-doped ZnO, aluminum nitrate nonahydrate is added to the precursor solution with an atomic percentage equal to 1 or 2 at.% Al. The multi thin layers are prepared by spin-coating onto glass substrates, and are transformed into ZnO upon annealing at 550°C. Films with preferential orientation along the c-axis are successfully obtained. The structural, morphological, and optical properties of the thin films as a function of aluminum content have been investigated for different elaboration parameters (e.g. layer number) using X-ray diffraction, atomic force microscopy, scanning electronic microscopy. Waveguiding properties of the thin films have been also studied using m-lines spectroscopy. The results indicate that our films are monomodes at 632.8 nm with propagation optical loss estimated around 1.6 dB/cm
    corecore