371 research outputs found

    Analysis of Groundwater Recharge in Mongolian Drylands Using Composite Vadose Zone Modeling

    Get PDF
    Knowledge of groundwater recharge (GR) is important for the effective management of water resources under semi-arid continental climates. Unfortunately, studies and data in Mongolia are limited due to the constraints in funding and lack of research infrastructures. Currently, the wide accessibility of freely available global-scale digital datasets of physical and chemical soil properties, weather data, vegetation characteristics, and depths to the water table offers new tools and basic information that can support low-cost physically based and process-oriented models. Estimates of GR over 41 study sites in Mongolia were obtained using HYDRUS-1D in a 2-m-thick soil profile with root depths of either 0.30 or 0.97 m by exploiting the daily precipitation and biome-specific potential evapotranspiration values. The GR simulated by HYDRUS-1D arrives at the water table and becomes the actual GR with a lag time that has been calculated using a simplified form of the Richards equation and a traveling wave model. The mean annual precipitation ranges from 57 to 316 mm year−1, and on average about 95% of it is lost by mean annual actual evapotranspiration. In the steppe region, the vegetation cover induces higher-than-normal actual transpiration losses and consequently lower GR. The mean annual GR rates span between 0.3 and 12.0 mm year−1, while travel times range between 4 and 558 years. Model prediction uncertainty was quantified by comparing actual evapotranspiration and GR with available maps and by a sensitivity assessment of lag time to the soil moisture in the deep vadose zone. The partial least squares regression (PLSR) was used to evaluate the impact of available environmental properties in explaining the 47.1 and 59.1% variability of the spatially averaged mean annual GR and travel time, respectively. The most relevant contributors are clay content, aridity index, and leaf area index for GR, and depth to the water table and silt content for the lag time. In data-poor, arid, and semi-arid regions such as Mongolia, where the mean annual GR rates are low and poorly correlated to precipitation, the ever-increasing availability of world databases and remote sensing products offers promise in estimating GR

    Prediction of biome-specific potential evapotranspiration in mongolia under a scarcity of weather data

    Get PDF
    We propose practical guidelines to predict biome-specific potential evapotranspiration (ETp) from the knowledge of grass-reference evapotranspiration (ET0) and a crop coefficient (Kc) in Mongolia. A paucity of land-based weather data hampers use of the Penman–Monteith equation (FAO-56 PM) based on the Food and Agriculture Organization (FAO) guidelines to predict daily ET0. We found that the application of the Hargreaves equation provides ET0 estimates very similar to those from the FAO-56 PM approach. The Kc value is tabulated only for crops in the FAO-56 guidelines but is unavailable for steppe grasslands. Therefore, we proposed a new crop coefficient, Kc adj defined by (a) net solar radiation in the Gobi Desert (Kc adjD) or (b) leaf area index in the steppe region (Kc adjS) in Mongolia. The mean annual ETp obtained using our approach was compared to that obtained by FAO-56 guidelines for forages (not steppe) based on tabulated Kc values in 41 lo-cations in Mongolia. We found the differences are acceptable (RMSE of 0.40 mm d−1) in northern Mongolia under high vegetation cover but rather high (RMSE of 1.69 and 2.65 mm d−1) in central and southern Mongolia. The FAO aridity index (AI) is empirically related to the ETp/ET0 ratio. Ap-proximately 80% and 54% reduction of ET0 was reported in the Gobi Desert and in the steppe loca-tions, respectively. Our proposed Kc adj can be further improved by considering local weather data and plant phenological characteristics

    Effects of drought on groundwater-fed lake areas in the Nebraska Sand Hills

    Get PDF
    Study region: The Nebraska Sand Hills (NSH) lies in the western part of Nebraska, United States. We chose the north-eastern, central, and western parts of NSH with distinct climate, topography, and hydrology. Study focus: The study assesses the response of hundreds of shallow groundwater-fed lakes to drought. Total lake area (TLA), determined by classifying Landsat satellite images from 1984 to 2018, was juxtaposed with published Palmer Drought Severity Index (PDSI) and detrended cumulative PDSI (DeCumPDSI) at monthly and annual timescales. The PDSI and DeCumPDSI were time lagged to incorporate the preceding climatic effect (groundwater time lag) and evaluated against TLA using Bayesian regression analysis. New hydrologic insight for the region: TLA in the NSH respond to the seasonal as well as long-term climatic effects moderated by topography, surface, and subsurface hydrology. A higher determination coefficient R2 and lower mean square error of TLA at annual PDSI and DeCumPDSI illustrate the effect of long-term climatic fluctuations and groundwater influence: the evaporative losses from lakes are modulated by the lake-groundwater exchange, but the groundwater recharge has a longer response time to the drought. The study provides a simple method of assessment of the climate impact that results from the satellite data, gridded climate observation, and statistics for sensitive landscape of the NSH

    First-order thermal correction to the quadratic response tensor and rate for second harmonic plasma emission

    Full text link
    Three-wave interactions in plasmas are described, in the framework of kinetic theory, by the quadratic response tensor (QRT). The cold-plasma QRT is a common approximation for interactions between three fast waves. Here, the first-order thermal correction (FOTC) to the cold-plasma QRT is derived for interactions between three fast waves in a warm unmagnetized collisionless plasma, whose particles have an arbitrary isotropic distribution function. The FOTC to the cold-plasma QRT is shown to depend on the second moment of the distribution function, the phase speeds of the waves, and the interaction geometry. Previous calculations of the rate for second harmonic plasma emission (via Langmuir-wave coalescence) assume the cold-plasma QRT. The FOTC to the cold-plasma QRT is used here to calculate the FOTC to the second harmonic emission rate, and its importance is assessed in various physical situations. The FOTC significantly increases the rate when the ratio of the Langmuir phase speed to the electron thermal speed is less than about 3.Comment: 11 pages, 2 figures, submitted to Physics of Plasma

    Blood-Brain Barrier Breakdown in a Single Post-stroke Rodent Brain

    Get PDF
    Stroke is a major cause of global morbidity and mortality. Middle cerebral artery occlusion (MCAO) has historically been the most common animal model of simulating ischemic stroke. The extent of neurological injury after MCAO is typically measured by cerebral edema, infarct zone, and blood-brain barrier (BBB) permeability. A significant limitation of these methods is that separate sets of brains must be used for each measurement. Here we examine an alternative method of measuring cerebral edema, infarct zone and BBB permeability following MCAO in the same set of brain samples. Ninety-six rats were randomly divided into three experimental groups. Group 1 (n = 27) was used for the evaluation of infarct zone and brain edema in rats post-MCAO (n = 17) vs. sham-operated controls (n = 10). Group 2 (n = 27) was used for the evaluation of BBB breakdown in rats post-MCAO (n = 15) vs. sham-operated controls (n = 10). In Group 3 (n = 42), all three parameters were measured in the same set of brain slices in rats post-MCAO (n = 26) vs. sham-operated controls (n = 16). The effect of Evans blue on the accuracy of measuring infarct zone by 2,3,5-triphenyltetrazolium chloride (TTC) staining was determined by measuring infarct zone with and without an applied blue filter. The effects of various concentrations of TTC (0, 0.05, 0.35, 0.5, 1, and 2%) on the accuracy of measuring BBB permeability was also assessed. There was an increase in infarct volume (p < 0.01), brain edema (p < 0.01) and BBB breakdown (p < 0.01) in rats following MCAO compared to sham-operated controls, whether measured separately or together in the same set of brain samples. Evans blue had an effect on measuring infarct volume that was minimized by the application of a blue filter on scanned brain slices. There was no difference in the Evans blue extravasation index for the brain tissue samples without TTC compared to brain tissue samples incubated in TTC. Our results demonstrate that measuring cerebral edema, infarct zone and BBB permeability following MCAO can accurately be measured in the same set of brain samples

    New insights into the drainage of inundated ice-wedge polygons using fundamental hydrologic principles

    Get PDF
    The pathways and timing of drainage from the inundated centers of ice-wedge polygons in a warming climate have important implications for carbon flushing, advective heat transport, and transitions from methane to carbon dioxide dominated emissions. Here, we expand on previous research using a recently developed analytical model of drainage from a low-centered polygon. Specifically, we perform (1) a calibration to field data identifying necessary model refinements and (2) a rigorous model sensitivity analysis that expands on previously published indications of polygon drainage characteristics. This research provides intuition on inundated polygon drainage by presenting the first in-depth analysis of drainage within a polygon based on hydrogeological first principles. We verify a recently developed analytical solution of polygon drainage through a calibration to a season of field measurements. Due to the parsimony of the model, providing the potential that it could fail, we identify the minimum necessary refinements that allow the model to match water levels measured in a low-centered polygon. We find that (1) the measured precipitation must be increased by a factor of around 2.2, and (2) the vertical soil hydraulic conductivity must decrease with increasing thaw depth. Model refinement (1) accounts for runoff from rims into the ice-wedge polygon pond during precipitation events and possible rain gauge undercatch, while refinement (2) accounts for the decreasing permeability of deeper soil layers. The calibration to field measurements supports the validity of the model, indicating that it is able to represent ice-wedge polygon drainage dynamics. We then use the analytical solution in non-dimensional form to provide a baseline for the effects of polygon aspect ratios (radius to thaw depth) and coefficient of hydraulic conductivity anisotropy (horizontal to vertical hydraulic conductivity) on drainage pathways and temporal depletion of ponded water from inundated ice-wedge polygon centers. By varying the polygon aspect ratio, we evaluate the relative effect of polygon size (width), inter-annual increases in active-layer thickness, and seasonal increases in thaw depth on drainage. The results of our sensitivity analysis rigorously confirm a previous analysis indicating that most drainage through the active layer occurs along an annular region of the polygon center near the rims. This has important implications for transport of nutrients (such as dissolved organic carbon) and advection of heat towards ice-wedge tops. We also provide a comprehensive investigation of the effect of polygon aspect ratio and anisotropy on drainage timing and patterns, expanding on previously published research. Our results indicate that polygons with large aspect ratios and high anisotropy will have the most distributed drainage, while polygons with large aspect ratios and low anisotropy will have their drainage most focused near their periphery and will drain most slowly. Polygons with small aspect ratios and high anisotropy will drain most quickly. These results, based on parametric investigation of idealized scenarios, provide a baseline for further research considering the geometric and hydraulic complexities of ice-wedge polygons

    Radioheliograph observations of microwave bursts with zebra structures

    Full text link
    The so-called zebra structures in radio dynamic spectra, specifically their frequencies and frequency drifts of emission stripes, contain information on the plasma parameters in the coronal part of flare loops. This paper presents observations of zebra structures in a microwave range. Dynamic spectra were recorded by Chinese spectro-polarimeters in the frequency band close to the working frequencies of the Siberian Solar Radio Telescope. The emission sources are localized in the flare regions, and we are able to estimate the plasma parameters in the generation sites using X-ray data. The interpretation of the zebra structures in terms of the existing theories is discussed. The conclusion has been arrived that the preferred generation mechanism of zebra structures in the microwave range is the conversion of plasma waves to electromagnetic emission on the double plasma resonance surfaces distributed across a flare loop.Comment: 18 pages, 7 figure

    Modelling gravitational instabilities: slab break-off and Rayleigh-Taylor diapirism

    Get PDF
    A non-standard new code to solve multiphase viscous thermo–mechanical problems applied to geophysics is presented. Two numerical methodologies employed in the code are described: A level set technique to track the position of the materials and an enrichment of the solution to allow the strain rate to be discontinuous across the interface. These techniques have low computational cost and can be used in standard desktop PCs. Examples of phase tracking with level set are presented in two and three dimensions to study slab detachment in subduction processes and Rayleigh–Taylor instabilities, respectively. The modelling of slab detachment processes includes realistic rheology with viscosity depending on temperature, pressure and strain rate; shear and adiabatic heating mechanisms; density including mineral phase changes and varying thermal conductivity. Detachment models show a first prolonged period of thermal diffusion until a fast necking of the subducting slab results in the break–off. The influence of several numerical and physical parameters on the detachment process is analyzed: The shear heating exerts a major influence accelerating the detachment process, reducing the onset time to one half and lubricating the sinking of the detached slab. The adiabatic heating term acts as a thermal stabilizer. If the mantle temperature follows an adiabatic gradient, neglecting this heating term must be included, otherwise all temperature contrasts are overestimated. As expected, the phase change at 410 km depth (olivine–spinel transition) facilitates the detachment process due to the increase in negative buoyancy. Finally, simple plume simulations are used to show how the presented numerical methodologies can be extended to three dimensions.Peer ReviewedPostprint (author’s final draft
    • …
    corecore