146 research outputs found

    The Internet of Things, Teamwork, and Service Projects

    Get PDF
    The Internet of Things (IoT) has made inroads into many aspects of our lives. The application of IoT has enhanced our workplace with such technologies as RFID sensors for tracking and replenishing resources. Yet, there is limited research about the way human processes, and in particular, team processes are changed by IoT objects. Herein, we focus on sociotechnical systems theory in order to connect IoT and team processes, where IoT objects are differentiated based on functionality. We draw on the team process framework to clarify the type of task-oriented activities team members engage in over time as they collectively complete work projects. We connect different IoT objects to team processes and propose that the synergies may enhance team efficiencies and effectiveness. As well, we provide a real-world scenario about air conditioning service that illustrates how different IoT objects may be introduced to affect the team processes that apply

    Structure basis for the unique specificity of medaka enteropeptidase light chain

    Get PDF
    Thermal stresses concern not renewed type of stresses, that is once having liberated, they cannot accumulate more. The estimation of purely thermoelastic contribution to a lithosphere stress state gives the additional information, allowing to predict the danger connected with such natural factors, as seismic and volcanic activity. Some theoretical thermoelastic problems for the geological environment of a difficult outline with non-uniform thermophysical characteristics are considered. The decision is received on the basis of a numerical finite elements method. Influence of the model fixation, the geometrical factor and boundary conditions on distribution of thermal stresses and dislocation is investigated. Computing experiments have shown, that the size of the maximum thermal stresses reaches 500 bar. The maximum values of vertical dislocation are reached by 90 m, and horizontal — 50 m. Neutral plane position are precisely defined. Термоупругие напряжения относятся к невозобновляемому типу напряжений, то есть, однажды высвободившись, напряжения не могут накапливаться вновь. Расчет термоупругого вклада в напряженное состояние литосферы дает дополнительную информацию, позволяющую оценить опасность, связанную с такими природными явлениями, как сейсмичность и вулканическая активность. Рассмотрено несколько теоретических моделей для геологической среды сложного очертания с неоднородными теплофизическими характеристиками. Решение получено на основе численного метода конечных элементов. Исследовано влияние «закрепления» модели, геометрического фактора, неоднородных граничных условий на распределение термоупругих напряжений и перемещений. Вычислительные эксперименты показали, что величина максимальных термоупругих напряжений достигает 500 б. Максимальные величины вертикальных перемещений не превышают 90 м, горизонтальных — 50 м. Положение нейтральной плоскости определяется точно. На основі методу скінченних елементів отримано детальний розподіл термопружних напружень і переміщень для неоднорідного геологічного середовища. Досліджено взаємний вплив геометрії середовища й неоднорідних граничних умов на розподіл термопружних напружень та переміщень

    Data and Knowledge Co-driving for Cancer Subtype Classification on Multi-Scale Histopathological Slides

    Full text link
    Artificial intelligence-enabled histopathological data analysis has become a valuable assistant to the pathologist. However, existing models lack representation and inference abilities compared with those of pathologists, especially in cancer subtype diagnosis, which is unconvincing in clinical practice. For instance, pathologists typically observe the lesions of a slide from global to local, and then can give a diagnosis based on their knowledge and experience. In this paper, we propose a Data and Knowledge Co-driving (D&K) model to replicate the process of cancer subtype classification on a histopathological slide like a pathologist. Specifically, in the data-driven module, the bagging mechanism in ensemble learning is leveraged to integrate the histological features from various bags extracted by the embedding representation unit. Furthermore, a knowledge-driven module is established based on the Gestalt principle in psychology to build the three-dimensional (3D) expert knowledge space and map histological features into this space for metric. Then, the diagnosis can be made according to the Euclidean distance between them. Extensive experimental results on both public and in-house datasets demonstrate that the D&K model has a high performance and credible results compared with the state-of-the-art methods for diagnosing histopathological subtypes. Code: https://github.com/Dennis-YB/Data-and-Knowledge-Co-driving-for-Cancer-Subtypes-Classificatio

    Stabilization for a class of rectangular descriptor systems via time delayed dynamic compensator

    Get PDF
    Abstract: This paper focuses on the stabilization problem for a class of rectangular descriptor systems through dynamic compensation. Such class of systems may not be stabilized by delayfree dynamic compensators, while delayed dynamic compensator could achieve such purpose. We provide a design scheme of time-delayed dynamic compensator which makes the closed-loop system admissible. The design involves solving a quadratic matrix inequality, and consequently, we build a linear matrix inequality (LMI) based algorithm to compute compensator gains. We verify that, under certain circumstances for which delay-free dynamic compensators fail to stabilize, the proposed method works well. An illustrative example demonstrates the usefulness of the present scheme

    Gradient elution LC-ESI-MS determination of tramadol in rat plasma

    Get PDF
    A sensitive and simple liquid chromatography/electrospray mass spectrometry (LC-ESI-MS) method for determination of tramadol in rat plasma using one-step protein precipitation was developed. After addition of ketamine as internal standard (IS), protein precipitation by acetonitrile was used as sample preparation. Chromatographic separation was achieved on an SB-C18 (2.1 mm × 50 mm, 3.5 μm) column with methanol-0.1 % formic acid as mobile phase with gradient elution. Electrospray ionization (ESI) source was applied and operated in positive ion mode; selected ion monitoring (SIM) mode was used to quantification using target fragment ions m/z 264.0 for tramadol and m/z 237.8 for the IS. Calibration plots were linear over the range of 5-500 ng/mL for tramadol in rat plasma. Lower limit of quantification (LLOQ) for tramadol was 5 ng/mL. Mean recovery of tramadol from plasma was in the range 92.8 %-97.4 %. RSD of intra-day and inter-day precision were both less than 10 %. This method is simple and sensitive enough to be used in pharmacokinetic research for determination of tramadol in rat plasma.Colegio de Farmacéuticos de la Provincia de Buenos Aire

    Hierarchical neural topic modeling with manifold regularization

    Get PDF
    Topic models have been widely used for learning the latent explainable representation of documents, but most of the existing approaches discover topics in a flat structure. In this study, we propose an effective hierarchical neural topic model with strong interpretability. Unlike the previous neural topic models, we explicitly model the dependency between layers of a network, and then combine latent variables of different layers to reconstruct documents. Utilizing this network structure, our model can extract a tree-shaped topic hierarchy with low redundancy and good explainability by exploiting dependency matrices. Furthermore, we introduce manifold regularization into the proposed method to improve the robustness of topic modeling. Experiments on real-world datasets validate that our model outperforms other topic models in several widely used metrics with much fewer computation costs

    Identification of wheat stem rust resistance genes in wheat cultivars from Hebei province, China

    Get PDF
    Wheat stem rust is caused by Puccinia graminis f. sp. tritici. This major disease has been effectively controlled via resistance genes since the 1970s. The appearance and spread of new races of P. graminis f. sp. tritici (eg., Ug99, TKTTF, and TTRTF) have renewed the interest in identifying the resistance gene and breeding cultivars resistant to wheat stem rust. In this study, gene postulation, pedigree analysis, and molecular detection were used to determine the presence of stem rust resistance genes in 65 commercial wheat cultivars from Hebei Province. In addition, two predominant races 21C3CTHTM and 34MRGQM were used to evaluate the resistance of these cultivars at the adult-plant stage in 2021–2022. The results revealed that 6 Sr genes (namely, Sr5, Sr17, Sr24, Sr31, Sr32, Sr38, and SrTmp), either singly or in combination, were identified in 46 wheat cultivars. Overall, 37 wheat cultivars contained Sr31. Sr5 and Sr17 were present in 3 and 3 cultivars, respectively. Gao 5218 strong gluten, Jie 13-Ji 7369, and Kenong 1006 contained Sr24, Sr32, and Sr38, respectively. No wheat cultivar contained Sr25 and Sr26. In total, 50 (76.9%) wheat cultivars were resistant to all tested races of P. graminis f. sp. tritici in field test in 2021–2022. This study is important for breeding wheat cultivars with resistance to stem rust

    Formation of the synaptonemal complex in a gynogenetic allodiploid hybrid fish

    Get PDF
    Introduction: The correct pairing and separation of homologous chromosomes during meiosis is crucial to ensure both genetic stability and genetic diversity within species. In allodiploid organisms, synapsis often fails, leading to sterility. However, a gynogenetic allodiploid hybrid clone line (GDH), derived by crossing red crucian carp (Carassius auratus ♀) and common carp (Cyprinus carpio ♂), stably produces diploid eggs. Because the GDH line carries 100 chromosomes with 50 chromosomes from the red crucian carp (RCC; ♀, 2n = 2x = 100) and 50 chromosomes from the common carp (CC; C. carpio L., ♂, 2n = 2x = 100), it is interesting to study the mechanisms of homologous chromosome pairing during meiosis in GDH individuals.Methods: By using fluorescence in situ hybridization (FISH) with a probe specific to the red crucian carp to label homologous chromosomes, we identified the synaptonemal complex via immunofluorescence assay of synaptonemal complex protein 3 (SCP3).Results: FISH results indicated that, during early ovarian development, the GDH oogonium had two sets of chromosomes with only one set from Carassius auratus, leading to the failure formation of normal bivalents and the subsequently blocking of meiosis. This inhibition lasted at least 5 months. After this long period of inhibition, pairs of germ cells fused, doubling the chromosomes such that the oocyte contained two sets of chromosomes from each parent. After chromosome doubling at 10 months old, homologous chromosomes and the synaptonemal complex were identified.Discussion: Causally, meiosis proceeded normally and eventually formed diploid germ cells. These results further clarify the mechanisms by which meiosis proceeds in hybrids
    corecore