80 research outputs found

    Environmental Sustainable Development: Study on the Value Realization Mechanism and Diversified Realization Path of Ecological Products under the Background of "Double Carbon"

    Get PDF
    Under the background of carbon neutrality and common prosperity, the importance of carbon sinks is constantly highlighted. Realizing the value of carbon sink ecological products is not only conducive to the realization of the goal of carbon neutrality, but also an effective way to promote the endogenous development of rural areas and promote common prosperity. Broadening the value transformation channel of carbon sink ecological products and realizing the sustainable transformation from "green water and green hills" to "Jinshan and Yinshan" provide a new way to achieve the goal of carbon neutrality and common prosperity. Based on the theoretical analysis of the traditional connotation, formation mechanism and value of carbon sink ecological products, this paper summarizes the main ways and existing problems of realizing carbon sink ecological value in China, systematically analyzes the two-way promotion relationship between the double carbon target and the realization of carbon sink ecological product value, and emphasizes the important role of carbon sink ecological value realization and participation in carbon market transactions in carbon emission reduction. It also summarizes the experience of international typical cases. Finally, suggestions and reflections were put forward for redistributing the supply of ecological products based on carbon sinks, improving the basic system for calculating the value of ecological products, strengthening the government's guiding role, improving the ecological rights trading market, and innovating financial models, providing reference for optimizing the innovative mechanism and path for realizing the value of ecological products in China under the "dual carbon" goal

    BiDFDC-Net: a dense connection network based on bi-directional feedback for skin image segmentation

    Get PDF
    Accurate segmentation of skin lesions in dermoscopic images plays an important role in improving the survival rate of patients. However, due to the blurred boundaries of pigment regions, the diversity of lesion features, and the mutations and metastases of diseased cells, the effectiveness and robustness of skin image segmentation algorithms are still a challenging subject. For this reason, we proposed a bi-directional feedback dense connection network framework (called BiDFDC-Net), which can perform skin lesions accurately. Firstly, under the framework of U-Net, we integrated the edge modules into each layer of the encoder which can solve the problem of gradient vanishing and network information loss caused by network deepening. Then, each layer of our model takes input from the previous layer and passes its feature map to the densely connected network of subsequent layers to achieve information interaction and enhance feature propagation and reuse. Finally, in the decoder stage, a two-branch module was used to feed the dense feedback branch and the ordinary feedback branch back to the same layer of coding, to realize the fusion of multi-scale features and multi-level context information. By testing on the two datasets of ISIC-2018 and PH2, the accuracy on the two datasets was given by 93.51% and 94.58%, respectively

    Borophene-based materials for energy, sensors and information storage applications

    Get PDF
    Borophene, as a rising-star monoelemental two-dimensional (2D) material, has motivated great interest because of its novel properties, such as anisotropic plasmonics, high carrier mobility, mechanical compliance, optical transparency, ultrahigh thermal conductance, and superconductivity. These properties make it an ideal candidate for use in the field of energy, sensors, and information storage. Stimulated by the realization of pioneering experimental works in 2015 and the follow-up synthesis experiments, a series of high-performance borophene-based devices in the fields, including supercapacitors, batteries, hydroelectric generators, humidity sensors, gas sensors, pressure sensors, and memories, have been experimentally reported in recent years, which are beneficial to the transition of borophene-based materials from experimental synthesis to practical application. Therefore, in addition to paying attention to the experimental preparation of borophene, significant efforts are needed to promote the advancement of related applications of borophene. In this review, after providing a brief overview of borophene evolution and synthesis, we mainly summarize the applications of borophene-based materials in energy storage, energy conversion, energy harvesting, sensors, and information storage. Finally, based on the current research status, some rational suggestions and discussions on the issues and challenges in the future research direction are proposed

    Effects of exogenous retinoic acid on ocular parameters in Guinea pigs with form deprivation myopia

    Get PDF
    Aim: Myopia is a common chronic eye disease, this study is to investigate the effects of exogenous retinoic acid (RA) on intraocular parameters, especially choroidal thickness (CT) and retinal thickness (RT), in guinea pigs with form deprivation myopia (FDM).Methods: A total of 80 male guinea pigs were divided randomly into 4 groups: Control, FDM, FDM + RA, and FDM + Citral groups. The FDM + RA group was given 24 mg/kg RA dissolved in 0.4 mL peanut oil; the FDM + Citral group was given citral 445 mg/kg dissolved in 0.4 mL peanut oil; The other two groups were given 0.4 mL peanut oil. After 4 weeks, the refractive error (RE), axial length (AL), and intraocular pressure (IOP) of all guinea pigs were measured, and the parameters of RT and CT were obtained using enhanced depth imaging optical coherence tomography (EDI-OCT).Results: After 4 weeks, both the RE and AL in the FDM and FDM + RA groups were increased, and the RT and CT in both groups were smaller than those in the Control group (p < 0.05). Only the IOP of the right eye in the FDM + RA group increased significantly (p < 0.05). The RT of the right eye of the 4 groups was compared: Control group > FDM + Citral group > FDM group > FDM + RA group. Compared with the RT of the left eye and the right eye among the 4 groups, the RT of the right eye in the FDM and FDM + RA groups was significantly less than that in the left eye (p < 0.05). Moreover, the CT of the right eye in the Control group was greater than that in the other three groups (p < 0.0001). There was no significant difference in the CT among the FDM, FDM + RA, and FDM + Citral groups (p > 0.05). In contrast to the RT results, the CT results of the left and right eyes in the FDM + Citral group showed statistically significant differences (p < 0.05).Conclusion: RA participates in the progression of FDM as a regulatory factor. Exogenous RA can increase the RE, AL, and IOP of FDM guinea pigs, and might aggravate the retinal thinning of FDM guinea pigs. Citral can inhibit these changes, but RA might not affect the thickness of the choroid

    Revisiting the complex time-varying effect of non-pharmaceutical interventions on COVID-19 transmission in the United States

    Get PDF
    IntroductionAlthough the global COVID-19 emergency ended, the real-world effects of multiple non-pharmaceutical interventions (NPIs) and the relative contribution of individual NPIs over time were poorly understood, limiting the mitigation of future potential epidemics.MethodsBased on four large-scale datasets including epidemic parameters, virus variants, vaccines, and meteorological factors across 51 states in the United States from August 2020 to July 2022, we established a Bayesian hierarchical model with a spike-and-slab prior to assessing the time-varying effect of NPIs and vaccination on mitigating COVID-19 transmission and identifying important NPIs in the context of different variants pandemic.ResultsWe found that (i) the empirical reduction in reproduction number attributable to integrated NPIs was 52.0% (95%CI: 44.4, 58.5%) by August and September 2020, whereas the reduction continuously decreased due to the relaxation of NPIs in following months; (ii) international travel restrictions, stay-at-home requirements, and restrictions on gathering size were important NPIs with the relative contribution higher than 12.5%; (iii) vaccination alone could not mitigate transmission when the fully vaccination coverage was less than 60%, but it could effectively synergize with NPIs; (iv) even with fully vaccination coverage >60%, combined use of NPIs and vaccination failed to reduce the reproduction number below 1 in many states by February 2022 because of elimination of above NPIs, following with a resurgence of COVID-19 after March 2022.ConclusionOur results suggest that NPIs and vaccination had a high synergy effect and eliminating NPIs should consider their relative effectiveness, vaccination coverage, and emerging variants

    The roles of climate, geography and natural selection as drivers of genetic and phenotypic differentiation in a widespread amphibian Hyla annectans (Anura: Hylidae)

    Get PDF
    The role of geological events and Pleistocene climatic fluctuations as drivers of current patterns of genetic variation in extant species has been a topic of continued interest among evolutionary biologists. Nevertheless, comprehensive studies of widely distributed species are still rare, especially from Asia. Using geographically extensive sampling of many individuals and a large number of nuclear single nucleotide polymorphisms (SNPs), we studied the phylogeography and historical demography ofHyla annectanspopulations in southern China. Thirty-five sampled populations were grouped into seven clearly defined genetic clusters that closely match phenotype-based subspecies classification. These lineages diverged 2.32-5.23 million years ago (Ma), a timing that closely aligns with the rapid and drastic uplifting of the Qinghai-Tibet Plateau and adjacent southwest China. Demographic analyses and species distribution models indicate that different populations of this species have responded differently to past climatic changes. In the Hengduan Mountains, most populations experienced a bottleneck, whereas the populations located outside of the Hengduan Mountains have gradually declined in size since the end of the last glaciation. In addition, the levels of phenotypic and genetic divergence were strongly correlated across major clades. These results highlight the combined effects of geological events and past climatic fluctuations, as well as natural selection, as drivers of contemporary patterns of genetic and phenotypic variation in a widely distributed anuran in Asia.Peer reviewe

    PyPose v0.6: The Imperative Programming Interface for Robotics

    Full text link
    PyPose is an open-source library for robot learning. It combines a learning-based approach with physics-based optimization, which enables seamless end-to-end robot learning. It has been used in many tasks due to its meticulously designed application programming interface (API) and efficient implementation. From its initial launch in early 2022, PyPose has experienced significant enhancements, incorporating a wide variety of new features into its platform. To satisfy the growing demand for understanding and utilizing the library and reduce the learning curve of new users, we present the fundamental design principle of the imperative programming interface, and showcase the flexible usage of diverse functionalities and modules using an extremely simple Dubins car example. We also demonstrate that the PyPose can be easily used to navigate a real quadruped robot with a few lines of code

    Intermolecular coupling enhanced thermopower in single- molecule diketopyrrolopyrrole junctions

    Get PDF
    Sorting out organic molecules with high thermopower is essential for understanding molecular thermoelectrics. The intermolecular coupling offers a unique chance to enhance the thermopower by tuning the bandgap structure of molecular devices, but the investigation of intermolecular coupling in bulk materials remains challenging. Herein, we investigated the thermopower of diketopyrrolopyrrole (DPP) cored single-molecule junctions with different coupling strengths by varying the packing density of the self-assembled monolayers (SAM) using a customized scanning tunneling microscope break junction (STM-BJ) technique. We found that the thermopower of DPP molecules could be enhanced up to one order of magnitude with increasing packing density, suggesting that the thermopower increases with larger neighboring intermolecular interactions. The combined density functional theory (DFT) calculations revealed that the closely-packed configuration brings stronger intermolecular coupling and then reduces the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap, leading to an enhanced thermopower. Our findings offer a new strategy for developing organic thermoelectric devices with high thermopower

    Structure-Independent Conductance of Thiophene-Based Single-Stacking Junctions.

    Get PDF
    Intermolecular charge transport is crucial in π-conjugated materials but the experimental investigation remained challenging. Here, we show that charge transport through intermolecular and intramolecular paths in single-molecule and single-stacking thiophene junctions could be investigated using the mechanically controllable break junction (MCBJ) technique. We found that intermolecular charge transport ability through different single-stacking junctions is approximately independent of molecular structures, which contrasts with the strong length dependence of conductance in single-molecule junctions with the same building blocks, and the dominant charge transport path of molecules with two anchors transits from intramolecular to intermolecular paths when the conjugation pattern increased. The increase of conjugation further leads to higher binding probabilities due to the variation in binding energies supported by density functional theory (DFT) calculations. Our results demonstrate that intermolecular charge transport is not only the limiting step but also provides the efficient and dominate charge transport path at the single-molecule scale

    Genome-wide association study identified novel candidate loci affecting wood formation in Norway spruce

    Get PDF
    Norway spruce is a boreal forest tree species of significant ecological and economic importance. Hence there is a strong imperative to dissect the genetics underlying important wood quality traits in the species. We performed a functional genome-wide association study (GWAS) of 17 wood traits in Norway spruce using 178 101 single nucleotide polymorphisms (SNPs) generated from exome genotyping of 517 mother trees. The wood traits were defined using functional modelling of wood properties across annual growth rings. We applied a Least Absolute Shrinkage and Selection Operator (LASSO-based) association mapping method using a functional multilocus mapping approach that utilizes latent traits, with a stability selection probability method as the hypothesis testing approach to determine a significant quantitative trait locus. The analysis provided 52 significant SNPs from 39 candidate genes, including genes previously implicated in wood formation and tree growth in spruce and other species. Our study represents a multilocus GWAS for complex wood traits in Norway spruce. The results advance our understanding of the genetics influencing wood traits and identifies candidate genes for future functional studies.Peer reviewe
    • …
    corecore