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Abstract 16 

The role of geological events and Pleistocene climatic fluctuations as drivers of current patterns of 17 

genetic variation in extant species has been a topic of continued interest among evolutionary biologists. 18 

Nevertheless, comprehensive studies of widely distributed species are still rare, especially from Asia. 19 

Using geographically extensive sampling of many individuals and a large number of nuclear single 20 

nucleotide polymorphisms (SNPs), we studied the phylogeography and historical demography of Hyla 21 

annectans populations in southern China. Thirty-five sampled populations were grouped into seven 22 

clearly defined genetic clusters that closely match phenotype-based subspecies classification. These 23 

lineages diverged 2.32–5.23 million years ago, a timing that closely aligns with the rapid and drastic 24 

uplifting of the Qinghai-Tibet Plateau and adjacent southwest China. Demographic analyses and species 25 

distribution models indicate that different populations of this species have responded differently to past 26 

climatic changes. In the Hengduan Mountains, most populations experienced a bottleneck, whereas the 27 

populations located outside of the Hengduan Mountains have gradually declined in size since the end of 28 

the last glaciation. In addition, the levels of phenotypic and genetic divergence were strongly correlated 29 

across major clades. These results highlight the combined effects of geological events and past climatic 30 

fluctuations, as well as natural selection, as drivers of contemporary patterns of genetic and phenotypic 31 

variation in a widely distributed anuran in Asia. 32 

Keywords: phylogeography, climatic fluctuations, population divergence, SNP, natural selection  33 
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Introduction 34 

Contemporary patterns of genetic variation across different geographic areas are affected by historical 35 

factors (Avise 1994; Hewitt 2004). Geological events such as the formation of mountain ranges and 36 

river systems can generate physical barriers to dispersal, fragmenting once connected habitats, hence 37 

resulting in allopatric divergence and speciation (Che et al. 2010; Chaves et al. 2011). Past climatic 38 

fluctuations, particularly those during the late Pleistocene, were important drivers of current 39 

distributions, genetic diversification, and demographic fluctuations of many temperate species and 40 

communities (Hewitt 2000; Hewitt 2004). During glacial periods, many taxa retreated into refugia and 41 

subsequently underwent range expansions during postglacial periods in response to the availability of 42 

newly formed habitats (Hewitt 2004). Hence, contemporary patterns of genetic variation within 43 

temperate zone species have been likely influenced by both paleogeological events and Pleistocene 44 

climatic fluctuations (Hewitt 1996; Kumar & Kumar 2018; Li et al. 2018).  45 

Genetic methods have been widely used to investigate the effects of climate and geography in driving 46 

current patterns of genetic and phenotypic variation within species (Avise 2000; Hewitt 2000; Leinonen 47 

et al. 2013; Kumar & Kumar 2018). Phylogeographic studies were initially based on mitochondrial 48 

DNA (mtDNA; Avise et al. 1987), and subsequently complemented with nuclear markers (e.g. Yan et 49 

al. 2013; Li et al. 2018). Given the now well-known limitations of evolutionary inferences based on 50 

mtDNA (Avise 2000; Ballard & Whitlock 2004; Guo et al. 2019), next generation sequencing (NGS) 51 

methods have largely replaced mtDNA and microsatellite markers in phylogeographic and population 52 

genetic investigations of non-model organisms (Avise 2009; McCormack et al. 2013). Although 53 

phylogeographic studies using NGS data have become increasingly common, most have focused on 54 

European and North American areas (e.g. Newman & Austin 2016; Dufresnes et al. 2019), while large-55 

scale phylogeographic studies based on NGS data from Asia are still relatively rare (but see: Zhao et al. 56 

2013; Zhou et al. 2016; Puckett et al. 2016; Jiang et al. 2018; Wang et al. 2018; Feng et al. 2019) 57 
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Southern China provides an interesting area for phylogeographic studies due to its unique geophysical 58 

conditions and abundant biodiversity (Yan et al. 2013; Li et al. 2015b; Li et al. 2018). The geological 59 

features of Chinese mainland have been remodeled by the uplift of the Himalayas and the Qinghai-Tibet 60 

Plateau (QTP; Harrison et al. 1992; Zhang 1999). Presently, these areas are characterized by many high-61 

elevation mountains, plateaus and river systems such as the Hengduan Mountains, Yunnan-Guizhou 62 

Plateau, and Yangtze River (Zhang 1999). These geographic barriers have likely played important roles 63 

in driving the genetic and phenotypic divergence of the species native to this region (Che et al. 2010; 64 

Yan et al. 2013).  Over the East Asian continent temperatures during the LGM were 2–4°C colder than 65 

today (Weaver et al. 1998; Ju et al. 2007), but unlike in Europe and North America, most areas in 66 

southern China were not covered by ice sheets during the Pleistocene (Shi et al. 1986; Liu 1988) – with 67 

the exception of the Hengduan Mountains (Zheng et al. 2002). Thus, Quaternary climatic fluctuations 68 

might have had less impact on patterns of genetic variation in southern China compared to Europe and 69 

North America, and their impact within regions of Southern China might have been heterogeneous 70 

(Wang & Ge 2006; Gao et al. 2011; Yan et al. 2013). 71 

Amphibians have been identified as good models for studying the factors that shape the patterns of 72 

genetic variation and differentiation, mainly for two reasons. First, because of their limited dispersal 73 

ability, they display very high levels of population genetic structuring compared to other animal classes 74 

(Ward et al. 1992; Zeisset & Beebee 2008; Sánchez-Montes et al. 2018). Second, as ectotherms they 75 

are sensitive to climatic conditions, and are thereby considered to be good indicators of climate change, 76 

both past and present (Bossuyt & Milinkovitch 2001; Graham et al. 2004; Kozak & Wiens 2010).  77 

The Jerdon's tree frog Hyla annectans (Anura: Hylidae) is widely distributed in Asia south of the 78 

Himalayas. In southern China, it occurs in low-to-medium elevation (ca. 580–2,500 m above sea level) 79 

forests (Fei et al. 2009). Currently, five subspecies (viz. H. a. gongshanensis, H. a. tengchongensis, H. 80 

a. jingdongensis, H. a. chuanxiensis, and H. a. wulingensis) with disjunct geographic distributions are 81 

recognized (Fei et al. 2009). The subspecies display phenotypic divergence in number and shape of 82 
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black spots on their flanks (Fei et al. 2009): such divergence indicates that these traits may have been 83 

subject to divergent sexual and/or natural selection. Given that the most recent common ancestor 84 

(MRCA) of H. annectans dates back to the mid Pliocene (~4 Mya, 95% CI: 3–5 Mya; Li et al. 2015a), 85 

the species has been exposed to the intense uplift of the Qinghai-Tibetan Plateau (QTP) and adjacent 86 

southwest China (Cui et al. 1996; Sun et al. 2011) and subsequent climatic oscillations. Hence, it is an 87 

ideal amphibian model system to study the effects of past geomorphological events and historical 88 

climatic fluctuations on phylogeography and historical demography. 89 

The primary aim of this study was to investigate the impacts of the past geomorphological events and 90 

Pleistocene climatic fluctuations on the patterns of genomic differentiation and historical demography 91 

in H. annectans. We screened thousands of genome wide genetic markers in a large number of samples 92 

covering most of the species distribution area in China, and subjected the data to various population 93 

genomic analyses, species distribution modelling, as well as analyses of historical demography. In 94 

addition, we tested for effects of natural selection on phenotypic traits, and whether the levels of 95 

(presumably neutral) genetic divergence among populations predicts levels of phenotypic divergence. 96 

Hence, the results were expected to yield insights as to how past geological events, climatic fluctuations 97 

and natural selection have shaped the distribution of genetic and phenotypic variation in an amphibian 98 

distributed over a large geographic area. 99 

Materials and methods 100 

Sampling and DNA extractions 101 

The sample collection of H. annectans was planned based on the maps provided in Fei et al. (2009). In 102 

total, we obtained 349 samples from 35 sites collected throughout the species’ distribution range in 103 

China (Figure 1, Table S1). Ten adult specimens per site were collected, with the exception of location 104 

“20”, from where nine specimens were obtained (Table S1). Muscle tissue was taken from each 105 

specimen and preserved in 99% ethanol in the field, and later transferred to a -20°C freezer in the 106 
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Molecular and Behavioral Ecology Research Group Laboratory, Central China Normal University, 107 

Wuhan. Genomic DNA was extracted using a standard CTAB protocol (Hanania et al. 2004). DNA 108 

concentration and quality were assessed using a ND-1000 spectrophotometer (NanoDrop, Wilmington, 109 

DE, USA); DNA quality was also checked on 1% agarose gels with lambda DNA standard. 110 

High-throughput sequencing and single nucleotide polymorphism data assembly 111 

We used the high-resolution Specific Length Amplified Fragment Sequencing (SLAF-seq) strategy for 112 

large-scale de novo SNP discovery and genotyping (Sun et al. 2013). The genome of Xenopus tropicalis 113 

(GenBank assemble accession: GCA_000004195.2) was chosen as a reference for running an in silico 114 

digestion to determine an appropriate combination of restriction enzymes. Appropriate enzymes should 115 

result in a large number (> 100,000) of unique SLAF markers that are randomly distributed throughout 116 

the training genome and contain a low proportion of repeat sequences. Based on the training results, we 117 

chose a combination of HaeIII and Hpy166II (New England Biolabs, NEB) restriction enzymes with a 118 

size-selection window of 414–444 bp, which was expected to yield approximately 110,000 SLAF tags 119 

in X. tropicalis. These enzymes were used to digest the genomic DNA of H. annectans for SLAF-seq 120 

library construction. Genomic DNA of each sample was digested with HaeIII and Hpy166II (New 121 

England Biolabs, NEB), and a dATP was used to add a single nucleotide (A) with Klenow Fragment 122 

(3’→5’ exo-) (NEB). Duplex Tag-labeled Sequencing adapters (PAGE purified, Life Technologies, 123 

USA) were ligated using T4 Ligase to the A-tailed DNA. The PCR reactions were run using diluted 124 

restriction-ligation samples, dNTPs, Q5® High-Fidelity DNA Polymerase, and forward (5’-125 

AATGATACGGCGACCACCGA-3’) and reverse (5’-CAAGCAGAAGACGGCATACG-3’; PAGE 126 

purified, Life Technologies, Beijing) primers. PCR products were purified using Agencourt AMPure 127 

XP beads (Beckman Coulter, High Wycombe, UK) and pooled. The pooled samples were checked by 128 

electrophoresis in a 2% agarose gel, and fragments varying in length from 414 to 444 bp (with indices 129 

and adaptors) were isolated using a Blue Pippin (Sage Science, Beverly, MA). The purified products 130 
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were submitted for paired-end 100-bp sequencing on the Illumina HiSeq 2500 system (Illumina, Inc; 131 

San Diego, CA, USA) according to the manufacturer’s guidelines. 132 

Data processing and SNP calling 133 

Adaptor contamination, primer contamination, and low quality reads were present in the raw sequence 134 

reads. FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to run an initial 135 

quality check on the raw data, and low quality reads (N content > 10%, more than 50% of bases with 136 

quality values < 10) were removed.  Given the paucity of genomic resource for H. annectans and related 137 

species (e.g. Hylidae), we clustered all the paired-end reads into SLAF loci with clear index information 138 

based on sequence similarity above 90% using BLAT (Kent 2002) and concatenated all loci into a “fake” 139 

reference genome. For each locus the reference sequence was selected based on maximum sequencing 140 

depth of the corresponding SLAF tag. We used these matched sequences as our reference for sequence 141 

alignment and SNP calling. High-quality reads were mapped onto this reference using BWA-MEM (Li 142 

& Durbin 2009). The mapped reads were then sorted and duplicate reads were removed using PICARD-143 

TOOLS v.1.67 (http://broadinstitute.github.io/picard/). Local realignment around the indel-regions was 144 

performed using RealignerTargetCreator and IndelRealigner in GATK (Genome Analysis Toolkit; 145 

McKenna et al. 2010). Since different variant calling pipelines may be prone to unique biases and 146 

provide inconsistent results (O'Rawe et al. 2013; Clevenger et al. 2015), we called variants using both 147 

the mpileup command in SAMTOOLS v.1.1 (Li et al. 2009) and GATK UnifiedGenotyper with default 148 

settings. We selected the concordant common sites identified by both GATK and SAMTOOLS using 149 

the SelectVariants package with default settings in GATK. Variant filtering was performed following 150 

the ‘Best Practices’ workflow developed by the GATK team (McKenna et al. 2010). Sequencing depths 151 

of each sample were calculated using the ‘Depth of Coverage’ module of GATK after removing indels 152 

with the SelectVariants package in GATK. The number of SLAF tags varied from 90,581 to 162,334 153 

across individual samples, and a total of 1,075,515 SLAF tags and 2,303,646 biallelic SNPs were 154 

retained. For phylogenetic and population genetic analyses, we excluded SNPs with allele count < 35 155 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://broadinstitute.github.io/picard/)
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and with missing data over 20% across all individuals. Only one SNP per locus was retained. Individuals 156 

with more than 40% missing data were removed (Zhao et al. 2016). The final filtered dataset included 157 

8,420 informative SNPs. For divergence time estimation and TREEMIX analyses, only SNPs with 158 

MAF > 0.05 and with less than 5% or 10% missing data, respectively, were retained. For demographic 159 

analyses (i.e. STAIRWAY PLOTS) no missing data were allowed, and the data were not filtered for 160 

MAF to avoid distorting the allele frequency spectra. More details on the different datasets are given in 161 

Supplementary Table S2. 162 

Phylogenetic inference 163 

A phylogeny of H. annectans populations was first estimated by constructing a Neighbor Joining (NJ) 164 

tree based on maximum composite likelihood with 10,000 bootstrap replicates using the MEGA X 165 

software (Kumar et al. 2018), with H. sanchiangensis as an outgroup. We estimated divergence times 166 

among lineages under the Multispecies Coalescent using the SNAPP v1.4.1 (Bryant et al. 2012) plugin 167 

of BEAST v2.4.4 (Bouckaert et al. 2014) with a molecular clock model (Stange et al. 2018). Since 168 

SNAPP is too computationally demanding to analyze all our individuals, we used a smaller dataset of 169 

72 individuals generated by randomly sampling two individuals from each site and from the outgroup. 170 

This dataset included a total of 2,183 SNPs with < 5% missing data. We used the time to most recent 171 

common ancestor (tMRCA) of H. annectans (set as a lognormal distribution with 4 Mya ± 0.14) and 172 

tMRCA between H. annectans and the outgroup H. sanchiangensis (set as a lognormal distribution with 173 

11.6 Mya ± 0.18) as calibration nodes. We obtained these priors from a time-calibrated phylogeny of 174 

the genus Hyla based on mitochondrial and nuclear genetic data with three fossil calibration points (Li 175 

et al. 2015a). In SNAPP, we ran three independent analyses with 1,000,000 MCMC iterations. We 176 

thinned each chain by sampling every 1,000 trees to reduce serial correlation and checked the 177 

convergence of the MCMC and effective sample sizes (above 200) in TRACER v.1.7 (Rambaut et al. 178 

2018). We combined the results from the three independent chains in LOGCOMBINER v2.4.4 179 

(Bouckaert et al. 2014).  We used the program DENSITREE v.2.2.6 (Bouckaert et al. 2014) to visualize 180 
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the SNAPP trees after discarding the first 10% of each MCMC chain as burn-in. Finally, we summarized 181 

the maximum-credibility trees with median heights in TREEANNOTATOR v.2.4.4 (Drummond & 182 

Rambaut 2007). 183 

Molecular diversity and genetic structure 184 

We examined the patterns of genetic structuring among H. annectans populations with two different 185 

methods. Firstly, we used the fast variational Bayesian algorithm implemented in the software 186 

fastSTRUCTURE (Raj et al. 2014). Values for K = 2–15 were tested to determine the optimal number 187 

of clusters (K) using the Bayesian model selection criterion provided by fastSTRUCTURE. We ran the 188 

analyses for the best-supported number of clusters by a) using the chooseK.py program (Raj et al. 2014), 189 

which infers the best fitting model as the number of K that maximizes the marginal likelihood low bound 190 

(LLBO), and b) running a fivefold cross-validation and choosing the value of K that minimized 191 

prediction error. To visualize population structure, we used the web application POPHELPER (Francis 192 

2017). Secondly, we ran a principal component analysis (PCA) based on the sample covariance matrix 193 

of the SNP data (Patterson et al. 2006) using the R package ADEGENET (Jombart 2008). 194 

After defining the genetic lineages of H. annectans on the basis of genetic clustering and phylogenetic 195 

analyses, we calculated genetic diversity indices including the expected (He) and observed 196 

heterozygosity (Ho) for each lineage using the R package ADEGENET (Jombart 2008). We estimated 197 

pairwise FST among genetic clusters in ARLEQUIN v.3.5.2.2 (Excoffier & Lischer 2010); 10,000 198 

permutations were run to test for statistical significance.  199 

Importance of environmental and geographical factors in explaining genetic differentiation 200 

We plotted Slatkin’s linearized FST (Slatkin 1995) against geographic distance to determine whether the 201 

observed patterns of genetic differentiation conform to Isolation by Distance model (IBD), and tested 202 

for a correlation between genetic and geographic distance matrices using a Mantel test with the ADE4 203 
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package in R. We estimated geographic distances calculated in ARCMAP implemented in ARCGIS 204 

Desktop version 10.3 (ESRI) based on latitude and longitude data for sampling site, and extracted the 205 

values using the “point distance” function.  206 

In addition, we used a distance-based redundancy analysis (dbRDA) to test the effects of environmental 207 

and geographical factors on explaining genetic differentiation of H. annectans populations. We set the 208 

pairwise FST as response variable. To obtain geographic explanatory variables, we computed a Euclidian 209 

distance matrix from the Cartesian coordinates for each sampling site using the “dist” function and 210 

performed the “pcnm” function (permutations = 1000) on this matrix to obtain uncorrelated vectors. We 211 

then selected the positive eigenvectors as spatial variables as they were positively correlated with the 212 

geographic distance. The first three positive vectors (GEO1, GEO2, GEO3) were retained and used to 213 

run the dbRDA analysis. As environmental explanatory variables, we used four climatic variables 214 

(BIO1, BIO2, BIO12 and BIO14) that minimized collinearity. We estimated the relative contributions 215 

of both geographic and environmental variables and their intersection by variance partitioning. We 216 

additionally applied the dbRDA to detect IBD, considering the widespread concerns about the reliability 217 

of Mantel tests (Kierepka & Latch 2014). All those analyses were performed by the “capscale” and 218 

“anova.cca” functions in R package VEGAN (Oksanen et al. 2019). 219 

Demographic analyses 220 

We estimated past changes in effective population size (Ne) for each sampling location with 221 

STAIRWAY PLOTS derived from folded SFS data (Liu & Fu 2015) in order to evaluate the effects of 222 

paleoclimatic changes. Since FST values were significant among most of the population pairs, we 223 

estimated the SFS for every single sampling location from a subset of biallelic SNPs with no missing 224 

data using ANGSD (Korneliussen et al. 2014), which resulted in 35 SNP datasets (Table S2). To 225 

construct STAIRWAY PLOTS, we used the default 2/3 of the data for training and [(nseq-2)/4, (nseq-226 

2)/2, 3*(nseq-2)/4 and (nseq-2)] as the number of random breakpoints (nrand, where nseq indicates the 227 
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number of sequences). We set generation time and mutation rate to two years (Liao & Lu 2010) and 228 

1.552 × 10-9 substitutions per site per generation (Sun et al. 2015), respectively.  229 

We reconstructed migration events among H. annectans populations using TREEMIX v1.12 (Pickrell 230 

& Pritchard 2012) based on 2,118 informative SNPs. The model scenario was specified as follows: we 231 

set the number of migration events to be from 1 to 20 (m=1–20), block size to 50, and H. sanchiangensis 232 

as the outgroup for the purpose of rooting. To evaluate the optimal number of migrations, we calculated 233 

the variance of relatedness between populations explained by the model using 234 

TreemixVarianceExplained.R (https://github.com), with over 99.8% of variance suggesting a reliable 235 

model (Pickrell & Pritchard 2012). 236 

Species distribution modelling (SDM) 237 

We generated SDMs for four time periods: the present time, the Mid-Holocene (5–7.5 kya), the Last 238 

Glacial Maximum (LGM; about 21 kya) and the Last Interglacial (LIG; about 120–140 kya) to 239 

investigate the possible influence of climatic changes on the distribution of H. annectans, using 240 

MAXENT v.3.3.3e (Phillips et al. 2006). We obtained the occurrence data of H. annectans used to build 241 

the SDMs in this study from four sources: samples used in this study, two literature records (Liao & Lu 242 

2010; Shen 1996), the Global Biodiversity Information Network GBIF (http://www.gbif.org), and 243 

VertNet (http://vertnet.org/; Table S3). Firstly, we removed data with no detailed locality information, 244 

imprecise GPS coordinates, obviously erroneous location (i.e. located in water bodies), as well as 245 

duplicate data. We only retained data at a resolution higher than 5 km, which corresponds to the 246 

resolution of the climatic data of each grid cell with size of 2.5 arc minutes (approximately 5 km). This 247 

resulted in a total 119 occurrence data points (Table S3). They were further assigned to main lineages 248 

(viz. lineage E [n=23], C [n=26], N1 [n=15], N2 [n =12], and W [n=43]) as inferred by the 249 

phylogeographic analyses (see Results). We searched for the best combinations of feature classes 250 

(determining the shape of the response curves) and regularization multipliers (determining the penalty 251 

http://vertnet.org/
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for adding parameters in the model) by evaluating model scores based on the Akaike information 252 

criterion (AICc). We used the ENMeval package (Muscarella et al. 2014) to identify the best model 253 

with the “ENMevaluate” function in R. The model feature types used were ‘L', 'H', 'LQ', 'LQH', 'LQHP', 254 

'LQHTP' (where: L = linear, Q = quadratic, H = hinge, P = product and T = threshold) and regularization 255 

(RM) values (0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4). For a proper evaluation, we calibrated SDMs using a 256 

random subset of 75% of the sampling sites; the remaining 25% were reserved to test the validity of the 257 

models. We used 19 bioclimatic layers as environmental predictors at 30-arcsec (~1 km) resolution, 258 

which we downloaded from the WorldClim database (http://www.worldclim.org/; Hijmans et al. 2005). 259 

To avoid multicollinearity, we selected BIO (bioclimatic variables) parameters using PCA. The results 260 

showed that the variance of the climate in the study area could be explained by four principal 261 

components (PCs) that captured 90% of the variance in the data. Thus, we selected one representative 262 

BIO parameter per PC (BIO1 = Annual Mean Temperature, BIO2 = Mean Diurnal Range, BIO12 = 263 

Annual Precipitation and BIO14 = Precipitation of Driest Month, Table S4) to create the SDMs. The 264 

three general circulation models (GCMs) used to generate Mid-Holocene and LGM climate scenarios 265 

were the CCSM4, MIROC-ESM (Watanabe et al. 2011) and MPI-ESM-P models available from the 266 

WorldClim database (http://www.worldclim.org/). Only one GCM of the LIG period was available. We 267 

used ARCGIS v.10.3 to manipulate and visualize the spatial environmental data and model output. 268 

We employed the Mobility-oriented parity (MOP; Owens et al. 2013) analysis to assess if the study 269 

areas had similar environmental conditions currently, during the LGM and during the LIG, and if 270 

extrapolation risks exist. We used the 10% as a subsampling percentage for study area in the current 271 

climate. We performed the analysis using the KUENM package (Cobos et al. 2019) in R. 272 

Niche divergence 273 

We compared SDMs products for the five main lineages (E, C, N1, N2 and W) separately, to evaluate 274 

niche divergence in their predicted niche distribution by using ENMTools (Warren et al. 2008). We 275 

utilized two metrics for calculating niche divergence from the MAXENT: Schoener’s D (Schoener 276 

http://www.worldclim.org/
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1968) and Warren’s I statistic (Warren et al. 2008). Both metrics range from 0 to 1, with 0 corresponding 277 

to identical niches and 1 representing no niche divergence between the two compared groups.  278 

Morphological analyses 279 

We also tested for differences between the main identified lineages and/or recognized subspecies (Fei 280 

et al. 2009). For each collected individual, we counted the number of distinct round black spots on the 281 

right (posterior) side of the body, as this is a taxonomically diagnostic character used to demarcate 282 

different subspecies (Fei et al. 2009). We measured the snout-vent length (SVL) to the nearest 0.01 mm 283 

with digital calipers and weighed the specimens to the nearest 0.1g with electronic digital balance. In 284 

total, we grouped 339 individuals (10 individuals from population “2” were not measured) according to 285 

their genetic cluster and compared the mean values of black spot numbers across clusters using a 286 

Kruskal-Wallis test, as trait values were not normally distributed. We also compared mean size and 287 

weight of individuals using a parametric ANOVA, as these traits were normally distributed. We 288 

performed all statistical using the SPSS software (SPSS 22.0, SPSS Inc, Chicago, IL, USA) and tested 289 

for significance at an alpha level of 0.05. We visualized the relationship between the number of black 290 

spots and the seven genetic clusters in R v.3.2.2 (R Core Team 2014). 291 

QST-FST comparison 292 

We conducted QST-FST comparisons to explore whether the degree of phenotypic differentiation in three 293 

traits (number of spots, snout-vent length, and weight) exceeded neutral expectation – which would 294 

indicate differentiation driven by natural selection – by using the R packages RAFM and DRIFTSEL 295 

(Ovaskainen et al. 2011; Karhunen et al. 2013). A QST is a metric equivalent to FST – while the latter is 296 

estimated from genetic marker data and reflects the degree of neutral genetic differentiation, the former 297 

is derived from phenotypic data reflects the degree of differentiation in quantitative traits (e.g. Leinonen 298 

et al. 2013). A QST significantly larger than FST would be indicative of differentiation in given 299 

quantitative trait exceeding neutral expectation, and hence, that the divergence in trait values is driven 300 
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by natural selection (Leinonen et al. 2013). Compared to conventional frequentist approaches, the 301 

RAFM/DRIFTSEL uses MCMC-based Bayesian algorithms to account for patterns of relatedness 302 

among populations, as well as ancestral genetic correlations among the traits of interest, hence the power 303 

to detect signatures of selection from data with small sample sizes is stronger than the conventional QST-304 

FST comparisons (Ovaskainen et al. 2011). First, the RAFM software calculated the FST and the genomic 305 

relatedness among the 35 populations based on the 8,420 SNPs. Next, we used DRIFTSEL to estimate 306 

the QST of the three traits: number of black spots, snout-vent length and weight, and also to perform the 307 

comparison between QST and FST. The final output of the DRIFTSEL analysis is a so-called S-statistic. 308 

S-values close to zero are indicative of stabilizing selection; those close to one indicate directional 309 

selection; and values close to 0.5 are consistent with evolution due to drift. Following the testing criteria 310 

proposed in Karhunen et al. (2014), S > 0.95 implies that a quantitative trait has evolved under divergent 311 

selection at the 95% credibility level, whereas S < 0.05 would imply stabilizing selection at the same 312 

credibility level. The default non-informative priors were used in the DRIFTSEL analyses. 15,000 313 

Markov Chain Monte Carlo (MCMC) samples of the posterior distribution were simulated, and the first 314 

5,000 were discarded as burn-ins. The remaining were stored in every 10th iteration, so that eventually 315 

1,000 MCMC samples were used for calculating S-statistics. 316 

We estimated the added variance component for the three abovementioned phenotypic traits to see 317 

whether the degree of phenotypic divergence is predictable from the degree of genetic divergence (FST), 318 

using a standard ANOVA approach (Sokal and Rohlf 1981). This quantity named as PST (Leinonen et 319 

al. 2013) is similar to QST (= the degree of genetic differentiation in quantitative traits; Leinonen et al. 320 

2013) under certain assumptions (within- and among-population components of variance are not 321 

confounded by environmental effects; Brommer 2011; Leinonen et al. 2013, see also Discussion). Since 322 

there is no reason to assume that these quantities would be normally distributed, we used Spearman rank 323 

correlation coefficient for testing this association. 324 

Results 325 
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Sequencing and SNP calling 326 

We sequenced 349 individuals of H. annectans using an Illumina HiSeqTM2500, generating a total of 327 

479 million paired-end reads. There were 82.78% bases with quality scores of at least 30 (Q30) and the 328 

guanine-cytosine content was 42.06%. We obtained 1,075,515 tags (or SLAFs) in total, and their 329 

average sequencing depth was 5.53 (Table S5). A total of 2,303,646 bi-allelic SNPs were obtained. After 330 

filtering, the four datasets contained 8,420 SNPs for phylogeny and structure analysis, 2,118 for 331 

estimating gene flow, 2,183 for divergence time estimation, and 3,002–14,842 SNPs (depending on the 332 

population) for analyses of historical demography. 333 

Phylogenetic inference 334 

Phylogenetic analyses based on 8,420 SNPs revealed seven major genetic clusters in the NJ-tree, 335 

concordant with geography (Figure 1). The eastern cluster (E) included 11 populations from the Wuling 336 

Mountains (Figure 1). The central cluster (C), which contained two sub-clusters (C1 and C2), included 337 

seven populations distributed across central and eastern Yunnan-Guizhou Plateau (Figure 1). The 338 

northern cluster (N) had two sub-clusters (N1 and N2), representing populations located in the Hengduan 339 

Mountains on the margin of the Sichuan Basin (Figure 1). The western cluster also contained two sub-340 

clusters (W1 and W2) distributed along the Hengduan Mountains and western Yunnan-Guizhou Plateau, 341 

respectively (Figure 1). 342 

We estimated that the lineages of H. annectans initiated their divergence during the Pliocene. The 343 

northern clade (N1 and N2) diverged from the other clades ca. 5.23 million years ago (Mya, with 95% 344 

highest posterior density interval (HDPI) of 4.38–6.55 Mya, Figure 2 and Figure S1). The eastern clade 345 

(E) diverged from the western and central clades (W and C) approximately 4.88 Mya (95% HDPI: 4.09–346 

6.15 Mya). Lineages N1 and N2 diverged approximately 4.44 Mya (95% HDPI: 3.60–5.80 Mya) and 347 

subsequently, the western and central clades split into two clades at about 3.77 Mya (95% HDPI: 3.22–348 

4.84 Mya). The genetic divergences within western and central clades were estimated to have occurred 349 
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at 2.32 Mya (95% HDPI: 1.63–2.90 Mya) for C1 and C2, and at 2.39 Mya (95% HDPI: 1.94–3.10 Mya) 350 

for W1 and W2 (Figure 2 and Figure S1). 351 

Molecular diversity and genetic structure 352 

The variation in observed and expected heterozygosity among clusters was considerable, ranging from 353 

0.013 (population 22) to 0.134 (population 11) for observed heterozygosity, and from 0.014 (population 354 

22) to 0.177 (population 11; Table S6) for expected heterozygosity. The highest observed and expected 355 

heterozygosities occurred in clusters E, C1 and C2, which were located in the Wuling Mountains and 356 

the East Yunnan-Guizhou Plateau (Table S6). Pairwise FST values were all statistically significant, with 357 

an average pairwise FST = 0.669, ranging from 0.016 to 0.957 (P < 0.001; Table S6), suggesting that H. 358 

annectans populations are geographically highly structured. 359 

The Bayesian clustering algorithm implemented in fastSTRUCTURE detected a clear geographical 360 

pattern of subdivision (optimal K = 7, Figures 3a and S2). At K = 2, the eastern (E) cluster was distinct 361 

from other clusters (Figure 3a); at K = 3, the western clusters (W1 and W2) were distinct from the central 362 

(C1 and C2) and northern (N1 and N2) clusters; at K = 4, the central clusters separated from the northern 363 

clusters; at K = 5, the northern clusters were divided into N1 and N2; at K = 6, the central cluster was 364 

divided into two sub-clusters C1 and C2, where population 15 was an admixture between the two sub-365 

clusters; at K = 7, the W2 cluster showed signs of admixture with an unsampled population. In addition, 366 

within the western cluster, cluster W2 was indicated to be an admixture between western and central 367 

clusters at K = 3-6; three populations (‘9’, ‘10’ and ‘11’) from the eastern cluster showed signs of 368 

admixture with the central cluster (C1) at K = 2-7. The clustering analyses using the simple models 369 

showed an optimal choice of K = 7, which had the lowest value of cross-validation (CV) error and the 370 

highest marginal likelihood (Figure S2). While the W1 and W2 clusters were adjacent, they were clearly 371 

separated in the PCA. Similarly, while the geographic distance separating clusters N1 and N2 was very 372 

short (e.g. the distance between sampling locations ‘20’ and ‘22’ is 38 km), all analyses indicated that 373 
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they were very highly differentiated (FST = 0.956) independent genetic clusters. In summary, results 374 

from the fastSTRUCTURE, PCA, and phylogenetic analyses suggest that the 35 H. annectans 375 

populations sampled from southwestern China are divided into seven geographically and genetically 376 

distinct lineages (N1, N2, W1, W2, C1, C2 and E). 377 

Importance of environmental and geographical factors in explaining genetic differentiation 378 

The IBD test revealed a weak but significant correlation (dbRDA r2
adj = 0.171, P = 0.001; Mantel test 379 

statistic r2 = 0.015, P = 0.003; Figure S3) when all populations were included. However, a few 380 

populations deviating from the general pattern (populations in clusters N1, N2 and W1 located at 381 

opposite sides of the Hengduan Mountains) showed a very high degree of differentiation over short 382 

geographic distances, suggesting very limited gene flow despite close geographic proximity. When we 383 

excluded these deviating populations, which comprised 14 out of the 35 sampling locations, a much 384 

stronger IBD was apparent (dbRDA r2
adj = 0.454, P = 0.001; Mantel test statistic r2 = 0.343, P < 0.001; 385 

Figure S3).  386 

The redundancy analyses revealed that the contribution of environmental variables to genetic divergence 387 

was somewhat higher than that of geographic variables (41 and 37%, respectively; Table 1). The 388 

variance partitioning test showed that the environmental and geographic variables explained 15.1% and 389 

14.7% of the variance, respectively, whereas their intersection explained 7% of variance (Figure S4). 390 

Demographic analyses 391 

The STAIRWAY PLOTS revealed diverse demographic histories for populations from different 392 

lineages. Populations in lineages W1, W2, E, C1 and C2 maintained stable population sizes during the 393 

LIG (Figure 4). Most of the populations within the Eastern and Central clusters experienced a moderate 394 

population size contraction during or shortly after the LGM or the Holocene Optimum. Populations 395 
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within clusters N1, N2 and W1 showed clear signs of strong population contractions followed by 396 

expansions during the Holocene Optimum and the LGM, respectively (Figure 4a,b,c). 397 

Although populations in the seven genetic lineages diverged and experienced different demographic 398 

histories, TREEMIX analyses (99.8% of variance explained) identified 12 migration events between 399 

populations (Figure 4h). Specifically, obvious migration events from populations in lineage C1 to the 400 

populations in lineage E, and between populations in C groups with populations in lineage W2 (Figure 401 

4h). We also found two weakly supported migration events from populations in lineage W2 to 402 

populations in lineage N2, and the ancestor of the northern populations could be attributed to an 403 

admixture event with the W2 lineages. Interestingly, there was a clear migration event from lineage E 404 

to lineage N1 despite the long geographic distance separating them, whereas no distinct migration event 405 

was detected between populations in lineages N1 and N2, which are closest together (Figure 4h).  406 

Species distribution modelling 407 

The lowest AICc was assigned to the LQHP 1 model (Figure S5 and Table S7), and this was chosen to 408 

generate the projections of species distribution model. The distribution model accurately predicted the 409 

distribution area under the curve (AUC) values (mean ± SE: 0.951 ± 0.123, Table S8), indicating a good 410 

performance of the predictive models. The predicted current species distribution area was generally 411 

similar to the actual known distribution area in China (Figure 1, 6 and Figure S6). The overall suitable 412 

distribution areas of all lineages shrank gradually from the LIG to LGM (Figure 5 and Figure S6). The 413 

suitable distribution areas of the N1 lineage was indicated to have reduced significantly, especially for 414 

the northwest corner of the Sichuan Basin from the LGM to the present (Figure 5c and Figure S6). The 415 

suitable distribution area of the N2 lineage was indicated to have shrank in the south region from the 416 

LGM to the present (Figure 5d and Figure S6). In contrast, several other regions including the southern 417 

Hengduan Mountains (sites for lineage W; Figure 5e and Figure S6), Yunnan-Guizhou Plateau (sites for 418 
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lineage C; Figure 5b and Figure S6) and Wuling Mountains (sites for lineage E; Figure 5a and Figure 419 

S6) have reduced slightly in size from the LGM to the present.  420 

The MOP analyses demonstrated that past scenarios mostly possess climates analogous to those in the 421 

current scenario in the distribution areas of H. annectans (Figure S7). Most of the strict extrapolation 422 

risk was present in the northern and eastern parts of the distribution maps for each period (HM, LGM, 423 

and LIG; Figure S7). 424 

Niche divergence 425 

Based on both Schoener's D and Warren's I, there was stronger niche divergence between the 426 

comparisons involving C and N1 lineages, E and N1 lineages, E and N2 lineages, E and W lineages than 427 

in the comparisons of between the N1 and W lineages, W and C lineages, and E and C lineages (Table 428 

2). It is notable that the comparison of the geographically closely located N1 and N2 lineages, a moderate 429 

degree niche divergence was observed (Schoener's D = 0.337; Warren's I = 0.634, Table 2).  430 

Morphological variation 431 

Comparison of mean number of black spots among the seven genetic clusters revealed significant 432 

differences between the clusters (Table 3). Comparisons of mean snout-vent length and weight among 433 

the genetic clusters also indicated significant differences (ANOVAs, snout-vent length: F6,319 = 3.13, P 434 

< 0.01; Weight: F6,319 = 9.96, P < 0.01). However, only few pairwise comparisons revealed significant 435 

differences in SVL (4.67% of comparisons) and weight (33.3% of comparisons; Table S9).  436 

QST-FST comparison 437 

DRIFTSEL yielded S = 0.95 for number of black spots, 0.44 for snout-vent length, 0.45 for weight and 438 

0.84 for all three traits tested together. Hence, the only evidence for natural selection was differentiation 439 

in the number of black spots, but not for the other traits whether considered separately or together. 440 
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Likewise, the correlations between pairwise FST and pairwise PST for the three different phenotypic traits 441 

were significant for number of black spots (r337 = -0.53, P = 10-16), but not for snout-vent length (r337 = 442 

-0.18) or weight (r337 = -0.09).  443 

Discussion 444 

We discovered that H. annectans in southern China consists of seven phylogenetic lineages with 445 

parapatric distributions. These lineages show high levels of genetic differentiation and also clear 446 

phenotypic divergence likely attributable to natural selection. These distinct genetic lineages diverged 447 

from each other 2.32 to 5.23 Mya, a timing that is broadly consistent with the rapid and intense uplift of 448 

the QTP and adjacent southwest China (Cui et al. 1996; Sun et al. 2011). The results further indicate 449 

that both geographic and environmental factors have contributed to the observed genetic differentiation. 450 

Demographic analyses and SDMs demonstrated that Pleistocene climatic fluctuations had different 451 

impacts on both population sizes and the extent of suitable habitat of different populations, possibly 452 

reflecting the fact that the past climatic conditions in the Hengduan Mountains differed from those in 453 

southern China. In the following, we will discuss these findings in more detail.  454 

At range-wide level, seven deeply divergent genetic lineages with parapatric distributions were 455 

discernable with phylogenetic, ordination and Bayesian clustering approaches. Although, we could have 456 

split W1 cluster into two further clusters from the PCA and the SNAPP tree, it would not have 457 

profoundly altered the results. These two sampling locations include only 20 individuals, which is 458 

roughly 5.7% of the data. The deep genetic divergence among different H. annectans lineages may be 459 

explained by two non-mutually exclusive biotic factors. First, it may be attributable to the limited 460 

dispersal capability of H. annectans. Geographic distance explained 23% of the variance in genetic 461 

differentiation, and a clear and strong pattern of isolation-by-distance was observed across most of the 462 

study populations. Second, the strong genetic structuring could be a result of the species-specific habitat 463 

requirements. The occurrence of H. annectans in China is restricted to mountain forests in low-to-464 
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medium elevations (Fei et al. 2009), which suggests that dispersal over high elevation mountain ranges 465 

is unlikely (see Figure 1). Consistent with this hypothesis, we found that elevation explained over 14% 466 

of genetic differentiation of H. annectans.  467 

We estimated that the seven genetic lineages of H. annectans diverged in the Pliocene (2.32–5.23 Mya). 468 

This timing matches the rapid and intense uplift of the QTP and adjacent Southwest China: the oldest 469 

uplifting starting about 8 Mya (Harrison et al. 1992) and was followed by several mid-Pliocene events 470 

(Cui et al. 1996; Sun et al. 2011). Each phase of these geological movements likely generated barriers 471 

to gene flow leading to strong genetic differentiation among populations and lineages in the southern 472 

mountains of China. For instance, the inferred divergence time of the N1 and N2 lineages at 4.4 Mya 473 

implicates the rise of Daxiangling Mountains as a probable driver of divergence. The intense uplifting 474 

of the mountain range in the western Sichuan basin, including the Daxiangling Mountains, occurred 475 

after the Miocene and reached peak elevation shortly before the Late Pliocene (Sun et al. 2011). 476 

Similarly, lineages W and N located in the opposite sides of the Hengduan Mountains likely diverged 477 

as a direct consequence of the uplift of the Hengduan Mountains, including Shaluli Mountains and 478 

Daxue Mountains located in this area. Further evidence for strongly restricted gene flow across the 479 

Hengduan Mountains was provided by our isolation-by-distance (IBD) analyses. We found that the 480 

pattern of IBD was weak (albeit statistically significant) when considering all populations, but became 481 

much stronger after removing populations from the high altitude lineages (W1, N1 and N2) located at 482 

opposite sides of the Hengduan Mountains. Similar uplift-driven diversification in southern China have 483 

also been reported from earlier studies of plants (Xing & Ree 2017) and animals (Yan et al. 2013; Li et 484 

al. 2015b). Thus, the complex geological events leading to habitat fragmentation and barriers to gene 485 

flow appear to be responsible for the high levels of intra- and interspecific diversity in the southern 486 

mountains of China. 487 

Pleistocene climatic fluctuations have had strong influence on demographic processes and distribution 488 

of taxa in Europe and North America (Hewitt 2000; Hewitt 2004). In southern China, the role of 489 
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paleoclimatic fluctuations on demographic processes and distribution of taxa have remained 490 

controversial. Some studies have reported that Pleistocene climatic oscillations have shaped current 491 

patterns of genetic variation in various taxa (Ye et al. 2014; Li et al. 2018), whereas other studies have 492 

produced contradictory evidence (Wang & Ge 2006; Gao et al. 2011; Yan et al. 2013). One possible 493 

reason for these opposing results could be methodological: estimation of demographic history with 494 

limited genetic data may lead to biased inferences (Avise 2000; Ballard & Whitlock 2004; Guo et al. 495 

2019). Here we were able to accurately reconstruct temporal changes in effective population size of the 496 

different lineages: these results suggest a heterogeneous effect of paleoclimatic factors on the 497 

demographic history of different H. annectans lineages. We found fluctuations in historical effective 498 

population sizes that followed Pleistocene climatic cycles, as well as changes in the extent and 499 

distribution of potential habitat for this species from the LIG to the present. These patterns highlight this 500 

species’ sensitivity to temperature changes, in accordance with our findings that two climatic factors 501 

(BIO1 and BIO2) were strong predictors of the degree of genetic differentiation among different 502 

lineages.  503 

The species’ response to paleoclimatic changes was geographically heterogeneous. Populations 504 

distributed around the Hengduan Mountains (lineages N1, N2 and W1), displayed an obvious bottleneck 505 

following the LGM or Mid-Holocene, and had the lowest heterozygosities of all studied populations. 506 

The results from species distribution models suggest that the N1 lineage experienced severe range 507 

contraction and that the southern distribution of the N2 lineage shrank from LGM to present. Such 508 

pattern is compatible with two indistinguishable demographic scenarios: the invasion of a completely 509 

novel habitat following the retreat of an ice sheet or extinction/re-colonization.  In contrast, most of the 510 

populations from lineages W2, E, C1 and C2 experienced moderate and gradual declines following the 511 

LGM or Mid-Holocene, as well as slight range contradictions (Figure 5). Such incongruence in the past 512 

demographic histories of different lineages possibly reflects differences in habitat availability. 513 

Populations in the Hengduan Mountains occupy a relatively smaller effective habitat area (Figure 1) 514 

making them more sensitive to environmental changes in their geographic range as smaller populations 515 
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have higher risk of decline or extinction (Green 2003). This was particularly relevant during the LGM 516 

– the period with dry conditions, low temperatures and extended ice sheets (Gasse 2000; Clark et al. 517 

2009). The fastSTRUCTURE and TREEMIX analyses identified admixture events between the C and 518 

E, as well as the C and W2 lineages, which could be the result of homogeneous environmental condition 519 

in the Yunnan-Guizhou Plateau and Wuling Mountains. Gene flow likely increased genetic variation 520 

within these lineages, as these lineages show the highest observed and expected heterozygosities. On 521 

the other hand, low levels of contemporary and historical gene flow divergence between C with N1 and 522 

N2 lineages, in spite of geographical proximity, were associated with moderate ecological niche 523 

divergence between the C and the N1 and N2 lineages (Schoener's D = 0.230, 0.377 and Warren's I = 524 

0.511, 0.653, respectively, Table 2).  525 

A clear and strong IBD was observed across most of the study populations, suggesting that there is – or 526 

has been – some degree of gene flow between different lineages; this conclusion was also supported by 527 

the TREEMIX results. However, the N1 and N2 lineages were an exception. These are the two lineages 528 

that are geographically closest (38 km), and yet displayed extremely high genetic divergence (FST = 529 

0.909), suggesting the absence of gene flow. Such divergence is likely the result of geological barriers 530 

(in this case: Daxiangling Mountains) and strong genetic drift. Interestingly, these lineages also showed 531 

moderate niche divergence (Schoener's D = 0.337 and Warren's I = 0.634), suggesting that they may be 532 

also ecologically divergent. However, the current distribution range of the N1 lineage may not reflect 533 

its past distribution. As shown by the SDM results, the habitat suitable for the N1 lineage around the 534 

northwest corner of Sichuan Basin contracted gradually from the LIG to the present. This interpretation 535 

is also supported by the observation that the populations in the N1 and N2 lineages were found to have 536 

experienced population size bottlenecks at different time periods. 537 

Apart from the deep genetic divergences revealed by both phylogenetic analyses and high pairwise FST 538 

values, the seven major lineages exhibited clear differentiation in phenotypic traits. Although 539 

differentiation in the mean values of all studies traits was significant, DRIFTSEL analyses suggest that 540 
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only divergence in the number of black spots was likely driven by selection. Since the data utilized in 541 

these analyses came from wild-collected individuals, rather than from a common garden experiment, 542 

the results should be interpreted with caution (Karhunen et al. 2013; Leinonen et al. 2013). Namely, the 543 

possibility of environmentally induced differences cannot be excluded as an alternative explanation for 544 

divergence in the number of black spots. Regardless of whether this divergence was genetic, 545 

environmental, or due to their combined effects, it is noteworthy that the magnitude of phenotypic 546 

differentiation (PST) exceeded, on average, that of neutral genetic differentiation (FST). Since the neutral 547 

expectation is that PST ≈ FST, any deviation from this calls for an explanation. Similarly, the fact that 548 

phenotypic differentiation was a negative function of neutral differentiation is noteworthy. The 549 

mechanistic explanation for this negative correlation is that some of the most genetically divergent 550 

populations were phenotypically the least diverged (e.g. lineages N1, N2 and E in Figure 2). Without 551 

common garden data, we cannot conclusively establish an ultimate explanation for the observed 552 

patterns. Nevertheless, we suspect that the divergence in number of black spots may be related to 553 

different sexual selection regimes in different lineages, as observed in other systems (Endler 1983; 554 

Reynolds & Fitzpatrick 2007; Rudh et al. 2007). Hence, an interesting avenue for future studies would 555 

be to investigate whether the phenotypic differentiation in number of black spots might act as pre-556 

zygotic isolation mechanism between the seven genetically divergent lineages. 557 

Conclusions 558 

In conclusion, our genome-wide analyses of H. annectans revealed seven highly differentiated genetic 559 

lineages, which also show clear phenotypic differences likely attributable to the action of natural 560 

selection. The estimated divergence times for these lineages closely align with the timing of the uplifting 561 

of the QTP and adjacent southwest China, suggesting that past geological events played a major role in 562 

shaping the distribution of genetic diversity within this species complex. Populations living in different 563 

areas displayed different demographic dynamics in response to Pleistocene and Holocene climatic 564 

changes. This is expected, because of the geographic and temporal variation in the climatic conditions 565 

experienced in different areas. As such, this study provides an example of how the combined effects of 566 
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geomorphological and climatic factors have shaped the distribution of genetic variation in a widely 567 

distributed species. The results highlight how geological events and topographic features play 568 

predominant roles as drivers of lineage differentiation, and that climatic fluctuations contribute to re-569 

shaping the distribution of genetic variability. 570 
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Tables and Figures 802 

Table 1. Results of dbRDA analysis testing for the effect of geographic (GEO1-3, Elevation) and 803 
environmental (BIO1, BIO2, BIO12, BIO14) on the degree of genetic differentiation (as measured by 804 
FST) among 35 populations of H. annectans. See text for explanation of GEO and BIO variables. 805 

 % of variance explained d.f. F P 

Geography 0.37    

Elevation 0.14 1 5.34 0.001 

GEO1 0.13 1 4.82 0.001 

GEO2 0.08 1 3.04 0.001 

GEO3 0.02 1 0.81 0.597 

Environment 0.41    

BIO1 0.06 1 2.12 0.033 

BIO2 0.13 1 5.01 0.002 

BIO12 0.08 1 2.73 0.004 

BIO14 0.14 1 5.39 0.001 

Residual 0.22 26   

 806 

Table 2. Summary of niche divergence comparisons among five H. annectans lineages using 807 
Schonner’s D (above diagonal) and Warren’s I (below diagonal). 808 

Lineages  N1 N2 W C E 

  Schoener’s D 

N1 

Warren’s I 

1.000 0.337 0.542 0.230 0.154 

N2 0.634 1.000 0.394 0.377 0.118 

W 0.831 0.679 1.000 0.456 0.238 

C 0.511 0.653 0.774 1.000 0.438 

E 0.370 0.296 0.488 0.745 1.000 

 809 

Table 3. Results of Kruskal-Wallis and subsequent post hoc (Dunn’s multiple comparisons test) tests 810 
for differences in mean number of black spots among the seven main H. annectans lineages. 811 

Lineage N 
Mean 

rank 

Kruskal-Wallis 

test value 
P 

Dunn's multiple comparison test 

C1 C2 N1 N2 W1 W2 

E 100  281.30  258.22 <0.001 * * * * * * 

C1 40  202.13     * ns ns * * 
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C2 30  112.25      ns ns ns ns 

N1 29  187.03       ns * ns 

N2 20  158.50        * ns 

W1  90  67.62         ns 

W2 30  112.25                  

* P < 0.05 812 

813 
Figure 1. Thirty five sampling sites of 349 H. annectans individuals from southern China (black 814 
symbols). The grey shade in the left corner insert indicates the entire species distribution range, 815 
downloaded from the IUCN website (http://www.iucnredlist.org/). The primary mountain systems and 816 
basins are indicated, and the major rivers are depicted with blue lines. The gradient of color on the map 817 
represents different elevations, the areas exceeding values suitable for H. annectans are shown in red 818 
(high elevation) and grey (low elevation). Populations are numbered as in Table S1. The phylogenetic 819 
tree on the right corner insert is a NJ tree constructed in MEGA X, branch labels represent bootstrap 820 
support value. Seven genetic lineages are indicated with different colors, which are also used in all other 821 
figures.  822 

http://www.iucnredlist.org/
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 823 
 824 
Figure 2. Phylogenetic relationships and phenotypic variation among H. annectans lineages. The 825 
SNAPP tree was obtained using H. sanchigangensis as an outgroup. Divergence times are shown on the 826 
horizontal axis. Colored boxes highlight the seven lineages consistent with genetic clustering analyses. 827 
The number of black spots on flanks is given on the right: a, H. annectans (this individual was not 828 
included in this study); b, individual “fp” from site 22 and genetic cluster N2 (4 black spots); c, 829 
individual “fg” from site 19 and genetic cluster N1 (4 black spots); d, individual “bf” from site 11 and 830 
genetic cluster E with (7 black spots); e, individual from site 14 and genetic cluster C1 (3 black spots); 831 
f, individual “ku” from site 18 and genetic cluster C2 (2 black spots); g, individual “lq” from site 35 and 832 
genetic cluster W2 (2 black spots); h, individual “nk” from site 31 and genetic cluster W1 (4 black 833 
spots); i, individual “jg” in site 27 and genetic cluster W1 (no black spots). 834 
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 835 
Figure 3. Inferred genetic structure of H. annectans populations according to (a) Bayesian cluster 836 
analysis using fastSTRUCTURE from K = 2 to K = 7 based on the 8,420 SNP dataset, and (b) PCA 837 
based on the 8,420 SNP dataset. In (a), codes above and below the plot refer to population and cluster 838 
identifiers, respectively. Different clusters are indicated with different colors. *denotes the optimal K 839 
value. In (b) the different colors of individual data points are coded according to their cluster identities. 840 
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 841 

 842 
Figure 4. Demographic history of H. annectans lineages. The x-axis indicates time, and the y-axis 843 
indicates Ne. Different colored lines in the plot depict different populations within a given lineage. (a) 844 
to (g) are STAIRWAY PLOTS for populations of the N1, N2, W1, W2, E, C1 and C2 lineages, 845 
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respectively. The blue shaded areas mark the Holocene Optimum (6–11 Kya, constrained by Zhou et al. 846 
2004), LGM (16–28 kya, constrained by Zhao et al. 2011) and LIG (120–140 kya, WorldClim: 847 
http://www.worldclim.org/) periods. (h) Migration among lineages inferred by TREEMIX. The 848 
migration weight indicates the proportion of ancestry derived from the migration edge. 849 
 850 

  851 

Figure 5. Species distribution models for H. annectans for present and historical (Mid Holocene (5–7.5 852 
kya), Last Glacial Maximum [LGM], 21 kya and the Last Interglacial [LIG], 120–140 kya) times. 853 
Warmer colors indicate higher probability of occurrence as predicted by MAXENT (Phillips et al. 854 
2006). Black symbols depict sampling sites used in this study. (a) to (e) are SDMs for populations of 855 
the E, C, N1, N2, and W lineages, respectively.   856 

http://www.worldclim.org/
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Supporting information 857 

Additional supporting information may be found in the online version of this article:  858 

Table S1. Sampling site data, gender and distribution cluster for genetic samples of H. annenctans used 859 
in this study. 860 

Table S2. Summary of each dataset used for the respective analysis.  861 

Table S3. GPS points used for building species distribution models for H. annectans. 862 

Table S4. Bioclimatic variable selection for species distribution modelling based on PCA analysis. 863 

Table S5. Summary of SLAF data collected in the final assembly of 349 samples of H. annectans. 864 

Table S6. Summary statistics of average observed heterozygosity (Ho), average expected 865 
heterozygosity (He) and pairwise FST values between the 35 populations of H. annectans. All FST values 866 
are statistically significant (P < 0.05). 867 

Table S7. Best fit MAXENT model based upon delta AICc from ENMeval. 868 

Table S8. AUC values for each model.  869 

Table S9. Pairwise F-values of morphological features (snout-vent length [SVL] and weight) of 339 870 
individuals from the seven main genetic lineages of H. annectans. Data were analyzed with Welch 871 
ANOVA using a Games-Howell post hoc test. 872 

Figure S1. SNAPP tree with the 95% posterior distributions of the time calibration. 873 

Figure S2. Results from fastSTRUCTURE clustering analyses using the simple models. (a) Prediction 874 
error from five-fold cross-validation. The lowest value of CV error is when K = 7. (b) The marginal 875 
likelihood at increasing number of K. The marginal likelihood is maximized when K = 7. 876 

Figure S3. Genetic isolation by distance. 877 

Figure S4. Variance partitioning results of dbRDA analyses. 878 

Figure S5. Delta AICc values of all models compared in ENMeval. 879 

Figure S6. SDMs for other models. 880 

Figure S7. Mobility-oriented parity analysis with during three periods (HM, LGM, and LIG). 881 
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Figure S1. SNAPP tree illustrating phylogenetic relationships among H. annectans using H. 
sanchigangensis as an outgroup. The lineage divergence times were calibrated and the numbers in the 
brackets represent the 95% posterior distributions of the estimates. Colored boxes highlight the seven 
lineages consistent with genetic clustering analyses. 
 

 
Figure S2. Results from fastSTRUCTURE clustering analyses using the simple model. (a) Prediction 
error from fivefold cross-validation (CV) for the fastSTRUCTURE analyses, the lowest value of CV 
error is when K = 7. (b) The marginal likelihood at increasing number of K. The marginal likelihood is 
maximized when K = 7. 
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Figure S3. Correlation between pairwise genetic differentiation among populations (Slatkin’s linearized 
FST) and the geographic distance separating populations. The green dots indicate comparisons of 
populations in clusters N1, N2 and W1, and were excluded from the other correlation analysis. The red 
line is the slope of linear regression (excluding the green data points) given solely for illustrative 
purposes. 

 

 

Figure S4. Variance partitioning results of dbRDA analyses. Geographic variables comprises four 
geographic vectors (Elevation, GEO1, GEO2, GEO3). Environmental variables comprise four 
environmental variables: BIO1, BIO2, BIO12, BIO14. 
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Figure S5. Delta AICc values of all models compared in ENMeval, model LQHP 1 was the best fit 
model. 
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Figure S6. SDM for other models. 
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Figure S7. Mobility-oriented parity analysis comparing current conditions of the calibration region for 
H. annectans distribution modelling during three periods (MH, LGM, and LIG). (a) Results for the 
CCSM4 scenario. (b) Results for MPI-ESM-P and (c) the results for MIROC-ESM. Blue indicates 
similar climates to the current climate. Black indicates areas of strict extrapolation.  

 



SVL Weight SVL Weight SVL Weight SVL Weight SVL
Cluster C1 0,903 0,354
Cluster C2 1,144 0.447* 0,240 0,093
Cluster N1 0,160 0,333 1,064 0.687* 1,304 0.78*
Cluster N2 0,215 0,263 1,119 0,617 1,359 0.71* 0,055 0,070
Cluster W1 0,629 0,222 1,533 0.576* 1.773* 0.669* 0,469 0,111 0,415
Cluster W2 0,052 0,020 0,956 0,373 1,196 0.467* 0,108 0,313 0,163
* P < 0.05

Table S9. Pairwise F -values of morphological features (snout-vent length [SVL] and weight) of 339 individuals from the seven genetic lineages of
were analyzed with Welch ANOVA using a Games-Howell post hoc  test.



Weight SVL Weight

0,040
0,243 0,578 0,202

-values of morphological features (snout-vent length [SVL] and weight) of 339 individuals from the seven genetic lineages of H. annectans. Data


