9 research outputs found

    An Efficient Cervical Whole Slide Image Analysis Framework Based on Multi-scale Semantic and Spatial Deep Features

    Full text link
    Digital gigapixel whole slide image (WSI) is widely used in clinical diagnosis, and automated WSI analysis is key for computer-aided diagnosis. Currently, analyzing the integrated descriptor of probabilities or feature maps from massive local patches encoded by ResNet classifier is the main manner for WSI-level prediction. Feature representations of the sparse and tiny lesion cells in cervical slides, however, are still challengeable for the under-promoted upstream encoders, while the unused spatial representations of cervical cells are the available features to supply the semantics analysis. As well as patches sampling with overlap and repetitive processing incur the inefficiency and the unpredictable side effect. This study designs a novel inline connection network (InCNet) by enriching the multi-scale connectivity to build the lightweight model named You Only Look Cytopathology Once (YOLCO) with the additional supervision of spatial information. The proposed model allows the input size enlarged to megapixel that can stitch the WSI without any overlap by the average repeats decreased from 103∌10410^3\sim10^4 to 101∌10210^1\sim10^2 for collecting features and predictions at two scales. Based on Transformer for classifying the integrated multi-scale multi-task features, the experimental results appear 0.8720.872 AUC score better and 2.51×2.51\times faster than the best conventional method in WSI classification on multicohort datasets of 2,019 slides from four scanning devices.Comment: 16 pages, 8 figures, already submitted to Medical Image Analysi

    Preoperative Strength Training for Clinical Outcomes Before and After Total Knee Arthroplasty: A Systematic Review and Meta-Analysis

    Get PDF
    BackgroundThere is an increasing interest in preoperative strength training for promoting post-operative rehabilitation, but the effectiveness of preoperative strength training for clinical outcomes after total knee arthroplasty (TKA) remains controversial.ObjectiveThis study aims to systematically evaluate the effect of preoperative strength training on clinical outcomes before and after TKA.MethodsWe systematically searched PubMed, Cochrane Library, Web of Science, and EMBASE databases from the inception to November 17, 2021. The meta-analysis was performed to evaluate the effects of preoperative strength training on clinical outcomes before and after TKA.ResultsSeven randomized controlled trials (RCTs) were included (n = 306). Immediately before TKA, the pooled results showed significant improvements in pain, knee function, functional ability, stiffness, and physical function in the strength training group compared with the control group, but not in strength (quadriceps), ROM, and WOMAC (total). Compared with the control group, the results indicated strength training had a statistically significant improvement in post-operative knee function, ROM, and functional ability at less than 1 month and 3 months, and had a statistically significant improvement in post-operative strength (quadriceps), stiffness, and WOMAC (total) at 3 months, and had a statistically significant improvement in post-operative pain at 6 months. However, the results indicated strength training had no statistically significant improvement in post-operative strength (quadriceps) at less than 1 month, 6, and 12 months, had no statistically significant improvement in post-operative pain at less than 1 month, 3, and 12 months, had no statistically significant improvement in post-operative knee function at 6 and 12 months, and had no statistically significant improvement in post-operative physical function at 3 months.ConclusionsPreoperative strength training may be beneficial to early rehabilitation after TKA, but the long-term efficacy needs to be further determined. At the same time, more caution should be exercised when interpreting the clinical efficacy of preoperative strength training for TKA

    Cervical Glandular Cell Detection from Whole Slide Image with Out-Of-Distribution Data

    Full text link
    Cervical glandular cell (GC) detection is a key step in computer-aided diagnosis for cervical adenocarcinomas screening. It is challenging to accurately recognize GCs in cervical smears in which squamous cells are the major. Widely existing Out-Of-Distribution (OOD) data in the entire smear leads decreasing reliability of machine learning system for GC detection. Although, the State-Of-The-Art (SOTA) deep learning model can outperform pathologists in preselected regions of interest, the mass False Positive (FP) prediction with high probability is still unsolved when facing such gigapixel whole slide image. This paper proposed a novel PolarNet based on the morphological prior knowledge of GC trying to solve the FP problem via a self-attention mechanism in eight-neighbor. It estimates the polar orientation of nucleus of GC. As a plugin module, PolarNet can guide the deep feature and predicted confidence of general object detection models. In experiments, we discovered that general models based on four different frameworks can reject FP in small image set and increase the mean of average precision (mAP) by 0.007∌0.015\text{0.007}\sim\text{0.015} in average, where the highest exceeds the recent cervical cell detection model 0.037. By plugging PolarNet, the deployed C++ program improved by 8.8\% on accuracy of top-20 GC detection from external WSIs, while sacrificing 14.4 s of computational time. Code is available in https://github.com/Chrisa142857/PolarNet-GCdetComment: 11 pages, 9 figure

    Gut Microbiota and Relevant Metabolites Analysis in Alcohol Dependent Mice

    No full text
    Alcohol abuse is a major public health crisis. Relative evidences supported that the gut microbiota (GM) played an important role in central nervous system (CNS) function, and the composition of them had changed after alcohol drinking. We sought to explore the changes of GM in alcohol dependence. In our study, the GM of mice with alcohol administration was detected through analyzed 16S rRNA gene sequencing and the fecal metabolites were analyzed by LC-MS. The microbial diversity was significantly higher in the alcohol administration group, the abundance of phylum Firmicutes and its class Clostridiales were elevated, meanwhile the abundance of Lachnospiraceae, Alistipes, and Odoribacter showed significant differences among the three groups. Based on LC-MS results, bile acid, secondary bile acid, serotonin and taurine level had varying degrees of changes in alcohol model. From paraffin sections, tissue damage was observed in liver and colon. These findings provide direct evidence that alcohol intake affects the composition of GM, enable a better understanding of the function of GM in the microbiota-gut-brain (MGB) axis, and give a new thought for alcohol addiction treatment

    DataSheet1_Asymmetries and relationships between muscle strength, proprioception, biomechanics, and postural stability in patients with unilateral knee osteoarthritis.docx

    No full text
    Background: The pathological mechanism of knee osteoarthritis (KOA) is unknown. KOA degeneration may be associated with changes in muscle strength, proprioception, biomechanics, and postural stability.Objective: This study aimed to assess asymmetries in muscle strength, proprioception, biomechanics, and postural stability of bilateral lower limbs in patients with unilateral KOA and healthy controls and analyze correlations between KOA and these parameters.Methods: A total of 50 patients with unilateral KOA (age range: 50-70) and 50 healthy subjects were recruited as study participants (age range: 50-70). Muscle strength, proprioception, femorotibial angle (FTA), femoral condylar–tibial plateau angle (FCTP), average trajectory error (ATE), and center of pressure (COP) sways areas were accessed in study participants, and the correlation between these variables was investigated.Results: In patients with unilateral KOA, lower limb muscle strength was significantly lower on the symptomatic side than on the asymptomatic side (p 0.05). Patients with unilateral KOA had lower muscle strength than healthy controls (p 0.05).Conclusion: In patients with unilateral KOA, muscle strength, proprioception, biomechanics, and postural stability of bilateral limbs are asymmetrical in unilateral KOA patients. Muscle strength, proprioception, and postural stability are significantly associated variables, and changes in these variables should be considered in KOA prevention and rehabilitation.</p
    corecore