29 research outputs found

    Fluorescence-Based Nanoparticle Tracking Analysis and Flow Cytometry for Characterization of Endothelial Extracellular Vesicle Release.

    Get PDF
    As extracellular vesicles (EVs) have become a prominent topic in life sciences, a growing number of studies are published on a regular basis addressing their biological relevance and possible applications. Nevertheless, the fundamental question of the true vesicular nature as well as possible influences on the EV secretion behavior have often been not adequately addressed. Furthermore, research regarding endothelial cell-derived EVs (EndoEVs) often focused on the large vesicular fractions comprising of microvesicles (MV) and apoptotic bodies. In this study we aimed to further extend the current knowledge of the influence of pre-isolation conditions, such as cell density and conditioning time, on EndoEV release from human umbilical vein endothelial cells (HUVECs). We combined fluorescence nanoparticle tracking analysis (NTA) and the established fluorescence-triggered flow cytometry (FT-FC) protocol to allow vesicle-specific detection and characterization of size and surface markers. We found significant effects of cell density and conditioning time on both abundance and size distribution of EndoEVs. Additionally, we present detailed information regarding the surface marker display on EVs from different fractions and size ranges. Our data provide crucial relevance for future projects aiming to elucidate EV secretion behavior of endothelial cells. Moreover, we show that the influence of different conditioning parameters on the nature of EndoEVs has to be considered.This research was funded by the Austrian Research promotion agency and Particle Metrix. Severin MĂŒhleder was funded by the Austrian Science Fund (FWF) project J4358.S

    Mitochondria-Targeted Antioxidants SkQ1 and MitoTEMPO Failed to Exert a Long-Term Beneficial Effect in Murine Polymicrobial Sepsis

    Get PDF
    Mitochondrial-derived reactive oxygen species have been deemed an important contributor in sepsis pathogenesis. We investigated whether two mitochondria-targeted antioxidants (mtAOX; SkQ1 and MitoTEMPO) improved long-term outcome, lessened inflammation, and improved organ homeostasis in polymicrobial murine sepsis. 3-month-old female CD-1 mice (n = 90) underwent cecal ligation and puncture (CLP) and received SkQ1 (5 nmol/kg), MitoTEMPO (50 nmol/kg), or vehicle 5 times post-CLP. Separately, 52 SkQ1-treated CLP mice were sacrificed at 24 h and 48 h for additional endpoints. Neither MitoTEMPO nor SkQ1 exerted any protracted survival benefit. Conversely, SkQ1 exacerbated 28-day mortality by 29%. CLP induced release of 10 circulating cytokines, increased urea, ALT, and LDH, and decreased glucose but irrespectively of treatment. Similar occurred for CLP-induced lymphopenia/neutrophilia and the NO blood release. At 48 h post-CLP, dying mice had approximately 100-fold more CFUs in the spleen than survivors, but this was not SkQ1 related. At 48 h, macrophage and granulocyte counts increased in the peritoneal lavage but irrespectively of SkQ1. Similarly, hepatic mitophagy was not altered by SkQ1 at 24 h. The absence of survival benefit of mtAOX may be due to the extended treatment and/or a relatively moderate-risk-of-death CLP cohort. Long-term effect of mtAOX in abdominal sepsis appears different to sepsis/inflammation models arising from other body compartments

    Mitochondria-Targeted Antioxidants SkQ1 and MitoTEMPO Failed to Exert a Long-Term Beneficial Effect in Murine Polymicrobial Sepsis

    Get PDF
    Mitochondrial-derived reactive oxygen species have been deemed an important contributor in sepsis pathogenesis. We investigated whether two mitochondria-targeted antioxidants (mtAOX; SkQ1 and MitoTEMPO) improved long-term outcome, lessened inflammation, and improved organ homeostasis in polymicrobial murine sepsis. 3-month-old female CD-1 mice (n=90) underwent cecal ligation and puncture (CLP) and received SkQ1 (5 nmol/kg), MitoTEMPO (50 nmol/kg), or vehicle 5 times post-CLP. Separately, 52 SkQ1-treated CLP mice were sacrificed at 24 h and 48 h for additional endpoints. Neither MitoTEMPO nor SkQ1 exerted any protracted survival benefit. Conversely, SkQ1 exacerbated 28-day mortality by 29%. CLP induced release of 10 circulating cytokines, increased urea, ALT, and LDH, and decreased glucose but irrespectively of treatment. Similar occurred for CLP-induced lymphopenia/neutrophilia and the NO blood release. At 48 h post-CLP, dying mice had approximately 100-fold more CFUs in the spleen than survivors, but this was not SkQ1 related. At 48 h, macrophage and granulocyte counts increased in the peritoneal lavage but irrespectively of SkQ1. Similarly, hepatic mitophagy was not altered by SkQ1 at 24 h. The absence of survival benefit of mtAOX may be due to the extended treatment and/or a relatively moderate-risk-of-death CLP cohort. Long-term effect of mtAOX in abdominal sepsis appears different to sepsis/inflammation models arising from other body compartments

    The influence of submarine groundwater discharges on subtidal meiofauna assemblages in south Portugal (Algarve)

    Get PDF
    Submarine groundwater discharges (SGD) have been documented as contributing to the biological productivity of coastal areas, through a bottom-up support to higher trophic levels. Nevertheless, the effects on the bottom levels of the coastal food web, namely the meiofauna, are still very poorly known. The “Olhos de Água” beach is the only area on the South coast of Portugal where submarine freshwater seepages have been identified. In this study, meiofauna assemblages in the area impacted by SGD were compared with the meiofauna from a similar area, but without SGD. Samples were taken in Spring and Summer 2011, under different hydrological regimes, aquifer recharge (after Winter) and dryness (after Spring), respectively. The major changes in the community were recorded at a seasonal level, with higher abundances and number of taxa in Spring, when compared to Summer. This may be explained by better sediment aeration during spring along with higher food availability from the sedimentation of spring phytoplankton blooms. Although no significant differences were detected by multivariate analysis on the meiofauna abundances between Control and Impact areas, pair-wise tests on the interactions between factors in number of taxa (S) and species richness (Margalef's d) suggested that the discharge of groundwater stimulated an increase in meiofauna diversity. Such effect can be observed between the meiofauna assemblages from impacted and control areas and also between periods with different discharge regimes (Spring and Summer) in the impacted area. These findings highlight the role that freshwater discharges from coastal aquifers have on meiofauna assemblages and suggest that SGD contribute to enhance the transfer of energy from the lower levels of the trophic web to upper levels

    Extended Coagulation Profiling in Isolated Traumatic Brain Injury:A CENTER-TBI Analysis

    Get PDF
    Background: Trauma-induced coagulopathy in traumatic brain injury (TBI) remains associated with high rates of complications, unfavorable outcomes, and mortality. The underlying mechanisms are largely unknown. Embedded in the prospective multinational Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study, coagulation profiles beyond standard conventional coagulation assays were assessed in patients with isolated TBI within the very early hours of injury. Methods: Results from blood samples (citrate/EDTA) obtained on hospital admission were matched with clinical and routine laboratory data of patients with TBI captured in the CENTER-TBI central database. To minimize confounding factors, patients with strictly isolated TBI (iTBI) (n = 88) were selected and stratified for coagulopathy by routine international normalized ratio (INR): (1) INR &lt; 1.2 and (2) INR ≄ 1.2. An INR &gt; 1.2 has been well adopted over time as a threshold to define trauma-related coagulopathy in general trauma populations. The following parameters were evaluated: quick’s value, activated partial thromboplastin time, fibrinogen, thrombin time, antithrombin, coagulation factor activity of factors V, VIII, IX, and XIII, protein C and S, plasminogen, D-dimer, fibrinolysis-regulating parameters (thrombin activatable fibrinolysis inhibitor, plasminogen activator inhibitor 1, antiplasmin), thrombin generation, and fibrin monomers. Results: Patients with iTBI with INR ≄ 1.2 (n = 16) had a high incidence of progressive intracranial hemorrhage associated with increased mortality and unfavorable outcome compared with patients with INR &lt; 1.2 (n = 72). Activity of coagulation factors V, VIII, IX, and XIII dropped on average by 15–20% between the groups whereas protein C and S levels dropped by 20%. With an elevated INR, thrombin generation decreased, as reflected by lower peak height and endogenous thrombin potential (ETP), whereas the amount of fibrin monomers increased. Plasminogen activity significantly decreased from 89% in patients with INR &lt; 1.2 to 76% in patients with INR ≄ 1.2. Moreover, D-dimer levels significantly increased from a mean of 943 mg/L in patients with INR &lt; 1.2 to 1,301 mg/L in patients with INR ≄ 1.2. Conclusions: This more in-depth analysis beyond routine conventional coagulation assays suggests a counterbalanced regulation of coagulation and fibrinolysis in patients with iTBI with hemostatic abnormalities. We observed distinct patterns involving key pathways of the highly complex and dynamic coagulation system that offer windows of opportunity for further research. Whether the changes observed on factor levels may be relevant and explain the worse outcome or the more severe brain injuries by themselves remains speculative.</p

    Comparison of post-traumatic changes in circulating and bone marrow leukocytes between BALB/c and CD-1 mouse strains.

    No full text
    This manuscript emerged from a larger third-party funded project investigating a new poly-trauma model and its influence upon secondary sepsis. The present sub-study compared selected leukocyte subpopulations in the circulation and bone marrow after polytrauma in BALB/c versus CD-1 mice. Animals underwent unilateral femur fracture, splenectomy and hemorrhagic shock. We collected blood and bone marrow for flow cytometry analysis at 24h and 48h post-trauma. Circulating granulocytes (Ly6G+CD11+) increased in both strains after trauma. Only in BALB/c mice circulating CD8+ T-lymphocytes decreased within 48h by 30%. Regulatory T-cells (Tregs, CD4+CD25+CD127low) increased in both strains by approx. 32%. Circulating Tregs and lymphocytes (CD11b-Ly6G-MHC-2+) were always at least 1.5-fold higher in BALB/c, while the bone marrow MHC-2 expression decreased in CD-1 mice (p<0.05). Overall, immune responses to polytrauma were similar in both strains. Additionally, BALB/c expressed higher level of circulating regulatory T-cells and MHC-2-positive lymphocytes compared to CD-1 mice

    Operability of a Resonance-Based Viscoelastic Haemostatic Analyzer in the High-Vibration Environment of Air Medical Transport

    No full text
    Trauma and bleeding are associated with a high mortality, and most of these deaths occur early after injury. Viscoelastic haemostatic tests have gained increasing importance in goal-directed transfusion and bleeding management. A new generation of small-sized and thus portable ultrasound-based viscoelastic analysers have been introduced in clinical practice. We questioned whether a promising candidate can be used in emergency helicopters, with a focus on the susceptibility to vibration stress. We investigated whether the high vibration environment of an emergency helicopter would affect the operability of an ultrasound-based viscoelastic analyser and would yield reproducible results in flight and on the ground. We drew blood from 27 healthy volunteers and performed simultaneous analyses on two TEG 6s. Each measurement was performed in-flight on board an Airbus H135 emergency helicopter and was repeated on the ground, close to the flight area. Results from both measurements were compared, and the recorded tracings and numeric results were analysed for artifacts. Vibratometric measurements were performed throughout the flight in order to quantify changes in the magnitude and character of vibrations in different phases of helicopter operation. The high vibration environment was associated with the presence of artifacts in all recorded tracings. There were significant differences in citrated Kaolin + Heparinase measurements in-flight and on the ground. All other assays increased in variability but did not show significant differences between the two time points. We observed numerous artifacts in viscoelastic measurements that were performed in flight. Some parameters that were obtained from the same sample showed significant differences between in-flight and on-ground measurements. Performing resonance-based viscoelastic tests in helicopter medical service is prone to artifacts. However, a 10 min delay between initiation of measurement and take-off might produce more reliable results

    Impact of Idarucizumab and Andexanet Alfa on DOAC Plasma Concentration and ClotProÂź Clotting Time: An Ex Vivo Spiking Study in A Cohort of Trauma Patients

    No full text
    Specific antagonists have been developed for the reversal of direct oral anticoagulants (DOAC). We investigated the impact of these reversal agents on the plasma concentration and visco-elastic test results of dabigatran and factor Xa inhibitors. After baseline measurements of dabigatran, the plasma concentration, and the visco-elastic ClotProÂź ecarin clotting time (ECA-CT), we added the reversal agent Idarucizumab in vitro and these two analyses were repeated. Likewise, the baseline plasma concentration of apixaban, edoxaban, and rivaroxaban as well as ClotProÂź Russell’s viper venom test clotting time (RVV-CT) were measured and reanalyzed following Andexanet alfa spiking. We analyzed fifty blood samples from 37 patients and 10 healthy volunteers. Idarucizumab decreased the measured dabigatran plasma concentration from 323.9 ± 185.4 ng/mL to 5.9 ± 2.3 ng/mL and ECA-CT from 706.2 ± 344.6 s to 70.6 ± 20.2 s, (all, p &lt; 0.001). Andexanet alfa decreased the apixaban concentration from 165.1 ± 65.5 ng/mL to 9.8 ± 8.1 ng/mL, edoxaban from 152.4 ± 79.0 ng/mL to 36.4 ± 19.2 ng/mL, and rivaroxaban from 153.2 ± 111.8 ng/mL to 18.1 ± 9.1 ng/mL (all p &lt; 0.001). Andexanet alfa shortened the RVV-CT of patients with apixaban from 239.2 ± 71.7 s to 151.1 ± 30.2 s, edoxaban from 288.2 ± 65.0 s to 122.7 ± 37.1 s, and rivaroxaban from 225.9 ± 49.3 s to 103.7 ± 12.1 s (all p &lt; 0.001). In vitro spiking of dabigatran-containing blood with Idarucizumab substantially reduced the plasma concentration and ecarin-test clotting time. Andexanet alfa lowered the concentration of the investigated factor Xa-inhibitors but did not normalize the RVV-CT. In healthy volunteers’ blood, Idarucizumab spiking had no impact on ECA-CT. Andexanet alfa spiking of non-anticoagulated blood prolonged RVV-CT (p = 0.001), potentially as a consequence of a competitive antagonism with human factor Xa
    corecore