40 research outputs found
Renormalized field theory of collapsing directed randomly branched polymers
We present a dynamical field theory for directed randomly branched polymers
and in particular their collapse transition. We develop a phenomenological
model in the form of a stochastic response functional that allows us to address
several interesting problems such as the scaling behavior of the swollen phase
and the collapse transition. For the swollen phase, we find that by choosing
model parameters appropriately, our stochastic functional reduces to the one
describing the relaxation dynamics near the Yang-Lee singularity edge. This
corroborates that the scaling behavior of swollen branched polymers is governed
by the Yang-Lee universality class as has been known for a long time. The main
focus of our paper lies on the collapse transition of directed branched
polymers. We show to arbitrary order in renormalized perturbation theory with
-expansion that this transition belongs to the same universality
class as directed percolation.Comment: 18 pages, 7 figure
An Extracellular Interactome of Immunoglobulin and LRR Proteins Reveals Receptor-Ligand Networks
Extracellular domains of cell surface receptors and ligands mediate cell-cell communication, adhesion, and initiation of signaling events, but most existing protein-protein âinteractomeâ data sets lack information for extracellular interactions. We probed interactions between receptor extracellular domains, focusing on a set of 202 proteins composed of the Drosophila melanogaster immunoglobulin superfamily (IgSF), fibronectin type III (FnIII), and leucine-rich repeat (LRR) families, which are known to be important in neuronal and developmental functions. Out of 20,503 candidate protein pairs tested, we observed 106 interactions, 83 of which were previously unknown. We âdeorphanizedâ the 20 member subfamily of defective-in-proboscis-response IgSF proteins, showing that they selectively interact with an 11 member subfamily of previously uncharacterized IgSF proteins. Both subfamilies interact with a single common âorphanâ LRR protein. We also observed interactions between Hedgehog and EGFR pathway components. Several of these interactions could be visualized in live-dissected embryos, demonstrating that this approach can identify physiologically relevant receptor-ligand pairs
The collapse transition of randomly branched polymers -renormalized field theory
We present a minimal dynamical model for randomly branched isotropic
polymers, and we study this model in the framework of renormalized field
theory. For the swollen phase, we show that our model provides a route to
understand the well established dimensional-reduction results from a different
angle. For the collapse -transition, we uncover a hidden
Becchi-Rouet-Stora super-symmetry, signaling the sole relevance of
tree-configurations. We correct the long-standing 1-loop results for the
critical exponents, and we push these results on to 2-loop order. For the
collapse -transition, we find a runaway of the renormalization
group flow, which lends credence to the possibility that this transition is a
fluctuation-induced first-order transition. Our dynamical model allows us to
calculate for the first time the fractal dimension of the shortest path on
randomly branched polymers in the swollen phase as well as at the collapse
transition and related fractal dimensions.Comment: 23 pages, 14 figure
Finite-size scaling of directed percolation in the steady state
Recently, considerable progress has been made in understanding finite-size
scaling in equilibrium systems. Here, we study finite-size scaling in
non-equilibrium systems at the instance of directed percolation (DP), which has
become the paradigm of non-equilibrium phase transitions into absorbing states,
above, at and below the upper critical dimension. We investigate the
finite-size scaling behavior of DP analytically and numerically by considering
its steady state generated by a homogeneous constant external source on a
d-dimensional hypercube of finite edge length L with periodic boundary
conditions near the bulk critical point. In particular, we study the order
parameter and its higher moments using renormalized field theory. We derive
finite-size scaling forms of the moments in a one-loop calculation. Moreover,
we introduce and calculate a ratio of the order parameter moments that plays a
similar role in the analysis of finite size scaling in absorbing nonequilibrium
processes as the famous Binder cumulant in equilibrium systems and that, in
particular, provides a new signature of the DP universality class. To
complement our analytical work, we perform Monte Carlo simulations which
confirm our analytical results.Comment: 21 pages, 6 figure
Transport on Directed Percolation Clusters
We study random lattice networks consisting of resistor like and diode like
bonds. For investigating the transport properties of these random resistor
diode networks we introduce a field theoretic Hamiltonian amenable to
renormalization group analysis. We focus on the average two-port resistance at
the transition from the nonpercolating to the directed percolating phase and
calculate the corresponding resistance exponent to two-loop order.
Moreover, we determine the backbone dimension of directed percolation
clusters to two-loop order. We obtain a scaling relation for that is in
agreement with well known scaling arguments.Comment: 4 page
Noisy random resistor networks: renormalized field theory for the multifractal moments of the current distribution
We study the multifractal moments of the current distribution in randomly
diluted resistor networks near the percolation treshold. When an external
current is applied between to terminals and of the network, the
th multifractal moment scales as , where is the correlation length exponent of
the isotropic percolation universality class. By applying our concept of master
operators [Europhys. Lett. {\bf 51}, 539 (2000)] we calculate the family of
multifractal exponents for to two-loop order. We find
that our result is in good agreement with numerical data for three dimensions.Comment: 30 pages, 6 figure
International Society of Sports Nutrition Position Stand: Nutritional recommendations for single-stage ultra-marathon; training and racing
Background. In this Position Statement, the International Society of Sports Nutrition (ISSN) provides an objective and critical review of the literature pertinent to nutritional considerations for training and racing in single-stage ultra-marathon. Recommendations for Training. i) Ultra-marathon runners should aim to meet the caloric demands of training by following an individualized and periodized strategy, comprising a varied, food-first approach; ii) Athletes should plan and implement their nutrition strategy with sufficient time to permit adaptations that enhance fat oxidative capacity; iii) The evidence overwhelmingly supports the inclusion of a moderate-to-high carbohydrate diet (i.e., ~60% of energy intake, 5 â 8 gâž±kgâ1·dâ1) to mitigate the negative effects of chronic, training-induced glycogen depletion; iv) Limiting carbohydrate intake before selected low-intensity sessions, and/or moderating daily carbohydrate intake, may enhance mitochondrial function and fat oxidative capacity. Nevertheless, this approach may compromise performance during high-intensity efforts; v) Protein intakes of ~1.6 g·kgâ1·dâ1 are necessary to maintain lean mass and support recovery from training, but amounts up to 2.5 gâž±kgâ1·dâ1 may be warranted during demanding training when calorie requirements are greater; Recommendations for Racing. vi) To attenuate caloric deficits, runners should aim to consume 150 - 400 kcalâž±hâ1 (carbohydrate, 30 â 50 gâž±hâ1; protein, 5 â 10 gâž±hâ1) from a variety of calorie-dense foods. Consideration must be given to food palatability, individual tolerance, and the increased preference for savory foods in longer races; vii) Fluid volumes of 450 â 750 mLâž±hâ1 (~150 â 250 mL every 20 min) are recommended during racing. To minimize the likelihood of hyponatraemia, electrolytes (mainly sodium) may be needed in concentrations greater than that provided by most commercial products (i.e., >575 mg·Lâ1 sodium). Fluid and electrolyte requirements will be elevated when running in hot and/or humid conditions; viii) Evidence supports progressive gut-training and/or low-FODMAP diets (fermentable oligosaccharide, disaccharide, monosaccharide and polyol) to alleviate symptoms of gastrointestinal distress during racing; ix) The evidence in support of ketogenic diets and/or ketone esters to improve ultra-marathon performance is lacking, with further research warranted; x) Evidence supports the strategic use of caffeine to sustain performance in the latter stages of racing, particularly when sleep deprivation may compromise athlete safety
Free and inexpensive materials on computing in teaching and learning activities : An informal appraisal
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/21775/1/0000169.pd