370 research outputs found

    Development of EOS-aided procedures for the determination of the water balance of hydrologic budget of a large watershed

    Get PDF
    Work focused on the acquisition of remotely sensed data for the 1985 to 1986 hydrogolic year; continuation of the field measurement program; continued acquisition and construction of passive microwave remote sensing instruments; a compilation of data necessary for an initial water balance computation; and participation with the EOS Simulataneity Team in reviewing the Feather River watershed as a possible site for a simultaneity experiment

    Cholinergic modulation of response properties and orientation tuning of neurons in primary visual cortex of anaesthetized Marmoset monkeys

    Get PDF
    Cortical processing is strongly influenced by the actions of neuromodulators such as acetylcholine (ACh). Early studies in anaesthetized cats argued that acetylcholine can cause a sharpening of orientation tuning functions and an improvement of the signal-to-noise ratio (SNR) of neuronal responses in primary visual cortex (V1). Recent in vitro studies have demonstrated that acetylcholine reduces the efficacy of feedback and intracortical connections via the activation of muscarinic receptors, and increases the efficacy of feed-forward connections via the activation of nicotinic receptors. If orientation tuning is mediated or enhanced by intracortical connections, high levels of acetylcholine should diminish orientation tuning. Here we investigate the effects of acetylcholine on orientation tuning and neuronal responsiveness in anaesthetized marmoset monkeys. We found that acetylcholine caused a broadening of the orientation tuning in the majority of cells, while tuning functions became sharper in only a minority of cells. Moreover, acetylcholine generally facilitated neuronal responses, but neither improved signal-to-noise ratio, nor reduced trial-to-trial firing rate variance systematically. Acetylcholine did however, reduce variability of spike occurrences within spike trains. We discuss these findings in the context of dynamic control of feed-forward and lateral ⁄ feedback connectivity by acetylcholine

    Experimental study of self-similarity in the coalescence growth regime

    Get PDF
    Theoretical Physic

    Longitudinal study of the effects of teat condition on the risk of new intramammary infections in dairy cows

    Get PDF
    Machine milking–induced alterations of teat tissue may impair local defense mechanisms and increase the risk of new intramammary infections. The objective of the current study was to assess the influence of short-term and long-term alterations of teat tissue and infectious status of the udder quarter on the risk of naturally occurring new intramammary infections, inflammatory responses, and mastitis. Short-term and long-term changes in teat condition of right udder quarters of 135 cows of a commercial dairy farm in Saxony-Anhalt, Germany, were recorded monthly for 10 mo using simple classification schemes. Quarter milk samples were collected from all examined quarters at each farm visit. Bacteriological culture results and somatic cell counts of quarter milk samples were used to determine new inflammatory responses (increase from ≀100,000 cells/mL to >100,000 cells/mL between 2 samples), new infections (detection of a pathogen from a quarter that was free of the same pathogen at the preceding sampling), and new mastitis (combination of new inflammatory response and new infection). Separate Poisson mixed models for new inflammatory responses, new infections, and new mastitis caused by specific pathogens or groups of pathogens (contagious, environmental, major, minor, or any) were used to estimate risk ratios and 95% confidence intervals. Data preparation and parameter estimation were performed using the open source statistical analysis software R. We observed no effect of any variable describing teat condition on the risk of new intramammary infections, inflammatory responses, or mastitis. Intramammary infections of the same udder quarter in the preceding month did not affect risk either

    Western Indian Ocean marine and terrestrial records of climate variability: a review and new concepts on land-ocean interactions since AD 1660

    Get PDF
    We examine the relationship between three tropical and two subtropical western Indian Ocean coral oxygen isotope time series to surface air temperatures (SAT) and rainfall over India, tropical East Africa and southeast Africa. We review established relationships, provide new concepts with regard to distinct rainfall seasons, and mean annual temperatures. Tropical corals are coherent with SAT over western India and East Africa at interannual and multidecadal periodicities. The subtropical corals correlate with Southeast African SAT at periodicities of 16–30 years. The relationship between the coral records and land rainfall is more complex. Running correlations suggest varying strength of interannual teleconnections between the tropical coral oxygen isotope records and rainfall over equatorial East Africa. The relationship with rainfall over India changed in the 1970s. The subtropical oxygen isotope records are coherent with South African rainfall at interdecadal periodicities. Paleoclimatological reconstructions of land rainfall and SAT reveal that the inferred relationships generally hold during the last 350 years. Thus, the Indian Ocean corals prove invaluable for investigating land–ocean interactions during past centuries

    Decay of isolated surface features driven by the Gibbs-Thomson effect in analytic model and simulation

    Full text link
    A theory based on the thermodynamic Gibbs-Thomson relation is presented which provides the framework for understanding the time evolution of isolated nanoscale features (i.e., islands and pits) on surfaces. Two limiting cases are predicted, in which either diffusion or interface transfer is the limiting process. These cases correspond to similar regimes considered in previous works addressing the Ostwald ripening of ensembles of features. A third possible limiting case is noted for the special geometry of "stacked" islands. In these limiting cases, isolated features are predicted to decay in size with a power law scaling in time: A is proportional to (t0-t)^n, where A is the area of the feature, t0 is the time at which the feature disappears, and n=2/3 or 1. The constant of proportionality is related to parameters describing both the kinetic and equilibrium properties of the surface. A continuous time Monte Carlo simulation is used to test the application of this theory to generic surfaces with atomic scale features. A new method is described to obtain macroscopic kinetic parameters describing interfaces in such simulations. Simulation and analytic theory are compared directly, using measurements of the simulation to determine the constants of the analytic theory. Agreement between the two is very good over a range of surface parameters, suggesting that the analytic theory properly captures the necessary physics. It is anticipated that the simulation will be useful in modeling complex surface geometries often seen in experiments on physical surfaces, for which application of the analytic model is not straightforward.Comment: RevTeX (with .bbl file), 25 pages, 7 figures from 9 Postscript files embedded using epsf. Submitted to Phys. Rev. B A few minor changes made on 9/24/9

    Two-dimensional X-ray diffraction as a tool for the rapid, non-destructive detection of low calcite quantities in aragonitic corals

    Get PDF
    Paleoclimate reconstructions based on reef corals require precise detection of diagenetic alteration. Secondary calcite can significantly affect paleotemperature reconstructions at very low amounts of ~1%. X-ray powder diffraction is routinely used to detect diagenetic calcite in aragonitic corals. This procedure has its limitations as single powder samples might not represent the entire coral heterogeneity. A conventional and a 2-D X-ray diffractometer were calibrated with gravimetric powder standards of high and low magnesium calcite (0.3% to 25% calcite). Calcite contents <1% can be recognized with both diffractometer setups based on the peak area of the calcite [104] reflection. An advantage of 2-D-XRD over convenient 1-D-XRD methods is the nondestructive and rapid detection of calcite with relatively high spatial resolution directly on coral slabs. The calcite detection performance of the 2-D-XRD setup was tested on thin sections from fossil Porites sp. samples that, based on powder XRD measurements, showed <1% calcite. Quantification of calcite contents for these thin sections based on 2-D-XRD and digital image analysis showed very similar results. This enables spot measurements with diameters of ∌4 mm, as well as systematic line scans along potential tracks previous to geochemical proxy sampling. In this way, areas affected by diagenetic calcite can be avoided and alternative sampling tracks can be defined. Alternatively, individual sampling positions that show dubious proxy results can later be checked for the presence of calcite. The presented calibration and quantification method can be transferred to any 2-D X-ray diffractometer

    Unveiling the sensory and interneuronal pathways of the neuroendocrine connectome in Drosophila.

    Get PDF
    Neuroendocrine systems in animals maintain organismal homeostasis and regulate stress response. Although a great deal of work has been done on the neuropeptides and hormones that are released and act on target organs in the periphery, the synaptic inputs onto these neuroendocrine outputs in the brain are less well understood. Here, we use the transmission electron microscopy reconstruction of a whole central nervous system in the Drosophila larva to elucidate the sensory pathways and the interneurons that provide synaptic input to the neurosecretory cells projecting to the endocrine organs. Predicted by network modeling, we also identify a new carbon dioxide-responsive network that acts on a specific set of neurosecretory cells and that includes those expressing corazonin (Crz) and diuretic hormone 44 (Dh44) neuropeptides. Our analysis reveals a neuronal network architecture for combinatorial action based on sensory and interneuronal pathways that converge onto distinct combinations of neuroendocrine outputs

    Darkness visible: reflections on underground ecology

    Get PDF
    1 Soil science and ecology have developed independently, making it difficult for ecologists to contribute to urgent current debates on the destruction of the global soil resource and its key role in the global carbon cycle. Soils are believed to be exceptionally biodiverse parts of ecosystems, a view confirmed by recent data from the UK Soil Biodiversity Programme at Sourhope, Scotland, where high diversity was a characteristic of small organisms, but not of larger ones. Explaining this difference requires knowledge that we currently lack about the basic biology and biogeography of micro-organisms. 2 It seems inherently plausible that the high levels of biological diversity in soil play some part in determining the ability of soils to undertake ecosystem-level processes, such as carbon and mineral cycling. However, we lack conceptual models to address this issue, and debate about the role of biodiversity in ecosystem processes has centred around the concept of functional redundancy, and has consequently been largely semantic. More precise construction of our experimental questions is needed to advance understanding. 3 These issues are well illustrated by the fungi that form arbuscular mycorrhizas, the Glomeromycota. This ancient symbiosis of plants and fungi is responsible for phosphate uptake in most land plants, and the phylum is generally held to be species-poor and non-specific, with most members readily colonizing any plant species. Molecular techniques have shown both those assumptions to be unsafe, raising questions about what factors have promoted diversification in these fungi. One source of this genetic diversity may be functional diversity. 4 Specificity of the mycorrhizal interaction between plants and fungi would have important ecosystem consequences. One example would be in the control of invasiveness in introduced plant species: surprisingly, naturalized plant species in Britain are disproportionately from mycorrhizal families, suggesting that these fungi may play a role in assisting invasion. 5 What emerges from an attempt to relate biodiversity and ecosystem processes in soil is our extraordinary ignorance about the organisms involved. There are fundamental questions that are now answerable with new techniques and sufficient will, such as how biodiverse are natural soils? Do microbes have biogeography? Are there rare or even endangered microbes
    • 

    corecore