481 research outputs found

    Tropical sea surface temperatures for the past four centuries reconstructed from coral archives

    Get PDF
    Most annually resolved climate reconstructions of the Common Era are based on terrestrial data, making it a challenge to independently assess how recent climate changes have affected the oceans. Here as part of the Past Global Changes Ocean2K project, we present four regionally calibrated and validated reconstructions of sea surface temperatures in the tropics, based on 57 published and publicly archived marine paleoclimate data sets derived exclusively from tropical coral archives. Validation exercises suggest that our reconstructions are interpretable for much of the past 400 years, depending on the availability of paleoclimate data within, and the reconstruction validation statistics for, each target region. Analysis of the trends in the data suggests that the Indian, western Pacific, and western Atlantic Ocean regions were cooling until modern warming began around the 1830s. The early 1800s were an exceptionally cool period in the Indo-Pacific region, likely due to multiple large tropical volcanic eruptions occurring in the early nineteenth century. Decadal-scale variability is a quasi-persistent feature of all basins. Twentieth century warming associated with greenhouse gas emissions is apparent in the Indian, West Pacific, and western Atlantic Oceans, but we find no evidence that either natural or anthropogenic forcings have altered El Ni ˜no–Southern Oscillation-related variance in tropical sea surface temperatures. Our marine-based regional paleoclimate reconstructions serve as benchmarks against which terrestrial reconstructions as well as climate model simulations can be compared and as a basis for studying the processes by which the tropical oceans mediate climate variability and change

    Western Indian Ocean marine and terrestrial records of climate variability: a review and new concepts on land-ocean interactions since AD 1660

    Get PDF
    We examine the relationship between three tropical and two subtropical western Indian Ocean coral oxygen isotope time series to surface air temperatures (SAT) and rainfall over India, tropical East Africa and southeast Africa. We review established relationships, provide new concepts with regard to distinct rainfall seasons, and mean annual temperatures. Tropical corals are coherent with SAT over western India and East Africa at interannual and multidecadal periodicities. The subtropical corals correlate with Southeast African SAT at periodicities of 16–30 years. The relationship between the coral records and land rainfall is more complex. Running correlations suggest varying strength of interannual teleconnections between the tropical coral oxygen isotope records and rainfall over equatorial East Africa. The relationship with rainfall over India changed in the 1970s. The subtropical oxygen isotope records are coherent with South African rainfall at interdecadal periodicities. Paleoclimatological reconstructions of land rainfall and SAT reveal that the inferred relationships generally hold during the last 350 years. Thus, the Indian Ocean corals prove invaluable for investigating land–ocean interactions during past centuries

    Dealing with climate change through understanding tropical ocean-atmosphere climate interactions and their impacts on marine ecosystems.

    Get PDF
    Australian scientists are world leaders in developing robust palaeo-environmental reconstructions from coral archives, relevant for understanding Australian climate extremes. The key issues for advancing this field are the need for high-resolution marine paleoclimate records to place the present in the context of past natural climate and sea level change, and to understand the impact of those changes on marine ecosystems. We call for sustained investment in paleoclimate science, infrastructure, and personnel to advance these critical areas of research

    Longitudinal study of the effects of teat condition on the risk of new intramammary infections in dairy cows

    Get PDF
    Machine milking–induced alterations of teat tissue may impair local defense mechanisms and increase the risk of new intramammary infections. The objective of the current study was to assess the influence of short-term and long-term alterations of teat tissue and infectious status of the udder quarter on the risk of naturally occurring new intramammary infections, inflammatory responses, and mastitis. Short-term and long-term changes in teat condition of right udder quarters of 135 cows of a commercial dairy farm in Saxony-Anhalt, Germany, were recorded monthly for 10 mo using simple classification schemes. Quarter milk samples were collected from all examined quarters at each farm visit. Bacteriological culture results and somatic cell counts of quarter milk samples were used to determine new inflammatory responses (increase from ≤100,000 cells/mL to >100,000 cells/mL between 2 samples), new infections (detection of a pathogen from a quarter that was free of the same pathogen at the preceding sampling), and new mastitis (combination of new inflammatory response and new infection). Separate Poisson mixed models for new inflammatory responses, new infections, and new mastitis caused by specific pathogens or groups of pathogens (contagious, environmental, major, minor, or any) were used to estimate risk ratios and 95% confidence intervals. Data preparation and parameter estimation were performed using the open source statistical analysis software R. We observed no effect of any variable describing teat condition on the risk of new intramammary infections, inflammatory responses, or mastitis. Intramammary infections of the same udder quarter in the preceding month did not affect risk either

    Heparanase is a prognostic indicator for postoperative survival in pancreatic carcinoma

    Get PDF
    British Journal of Cancer (2002) 87, 689–689. doi:10.1038/sj.bjc.6600504 www.bjcancer.co

    Madagascar corals reveal a multidecadal signature of rainfall and river runoff since 1708

    Get PDF
    Pacific Ocean sea surface temperatures (SST) influence rainfall variability on multidecadal and interdecadal timescales in concert with the Pacific Decadal Oscillation (PDO) and Interdecadal Pacific Oscillation (IPO). Rainfall variations in locations such as Australia and North America are therefore linked to phase changes in the PDO. Furthermore, studies have suggested teleconnections exist between the western Indian Ocean and Pacific Decadal Variability (PDV), similar to those observed on interannual timescales related to the El Niño Southern Oscillation (ENSO). However, as instrumental records of rainfall are too short and sparse to confidently assess multidecadal climatic teleconnections, here we present four coral climate archives from Madagascar spanning up to the past 300 yr (1708–2008) to assess such decadal variability. Using spectral luminescence scanning to reconstruct past changes in river runoff, we identify significant multidecadal and interdecadal frequencies in the coral records, which before 1900 are coherent with Asian-based PDO reconstructions. This multidecadal relationship with the Asian-based PDO reconstructions points to an unidentified teleconnection mechanism that affects Madagascar rainfall/runoff, most likely triggered by multidecadal changes in North Pacific SST, influencing the Asian Monsoon circulation. In the 20th century we decouple human deforestation effects from rainfall-induced soil erosion by pairing luminescence with coral geochemistry. Positive PDO phases are associated with increased Indian Ocean temperatures and runoff/rainfall in eastern Madagascar, while precipitation in southern Africa and eastern Australia declines. Consequently, the negative PDO phase that started in 1998 may contribute to reduced rainfall over eastern Madagascar and increased precipitation in southern Africa and eastern Australia. We conclude that multidecadal rainfall variability in Madagascar and the western Indian Ocean needs to be taken into account when considering water resource management under a future warming climate

    Weak selection and stability of localized distributions in Ostwald ripening

    Full text link
    We support and generalize a weak selection rule predicted recently for the self-similar asymptotics of the distribution function (DF) in the zero-volume-fraction limit of Ostwald ripening (OR). An asymptotic perturbation theory is developed that, when combined with an exact invariance property of the system, yields the selection rule, predicts a power-law convergence towards the selected self-similar DF and agrees well with our numerical simulations for the interface- and diffusion-controlled OR.Comment: 4 pages, 2 figures, submitted to PR

    Decay of isolated surface features driven by the Gibbs-Thomson effect in analytic model and simulation

    Full text link
    A theory based on the thermodynamic Gibbs-Thomson relation is presented which provides the framework for understanding the time evolution of isolated nanoscale features (i.e., islands and pits) on surfaces. Two limiting cases are predicted, in which either diffusion or interface transfer is the limiting process. These cases correspond to similar regimes considered in previous works addressing the Ostwald ripening of ensembles of features. A third possible limiting case is noted for the special geometry of "stacked" islands. In these limiting cases, isolated features are predicted to decay in size with a power law scaling in time: A is proportional to (t0-t)^n, where A is the area of the feature, t0 is the time at which the feature disappears, and n=2/3 or 1. The constant of proportionality is related to parameters describing both the kinetic and equilibrium properties of the surface. A continuous time Monte Carlo simulation is used to test the application of this theory to generic surfaces with atomic scale features. A new method is described to obtain macroscopic kinetic parameters describing interfaces in such simulations. Simulation and analytic theory are compared directly, using measurements of the simulation to determine the constants of the analytic theory. Agreement between the two is very good over a range of surface parameters, suggesting that the analytic theory properly captures the necessary physics. It is anticipated that the simulation will be useful in modeling complex surface geometries often seen in experiments on physical surfaces, for which application of the analytic model is not straightforward.Comment: RevTeX (with .bbl file), 25 pages, 7 figures from 9 Postscript files embedded using epsf. Submitted to Phys. Rev. B A few minor changes made on 9/24/9

    Patterns of Pacific decadal variability recorded by Indian Ocean corals

    Get PDF
    We investigate Pacific Decadal Oscillation (PDO) signals recorded by two bimonthly resolved coral δ18O series from La Réunion and Ifaty (West Madagascar), Indian Ocean from 1882 to 1993. To isolate the main PDO frequencies, we apply a band pass filter to the time series passing only periodicities from 16 to 28 years. We investigate the covariance patterns of the coral time series with sea surface temperature (SST) and sea level pressure (SLP) of the Indian and Pacific Oceans. In addition, the empirical orthogonal functions of the filtered SST and SLP fields (single and coupled) are related to the filtered coral times series. The covariance maps show the typical PDO pattern for SST and SLP, confirming the coupling between the Indian and Pacific Oceans. Both corals show the strongest signal in boreal summer. The La Réunion (Ifaty) coral better records SST (SLP) than SLP (SST) pattern variability. We suggest that the filtered La Réunion coral δ18O represents δ18O of seawater that varies with the South Equatorial Current, which, in turn, is linked with the SST PDO. The filtered Ifaty coral δ18O represents SST and is remotely linked with the SLP PDO variability. A combined coral record of the Ifaty and La Réunion boreal summer δ18O series explains about 64% of the variance of the coupled SST/SLP PDO time series
    • …
    corecore