777 research outputs found

    Near-IR Transmission Spectrum of HAT-P-32b using HST/WFC3

    Get PDF
    We report here the analysis of the near-infrared transit spectrum of the hot Jupiter HAT-P-32b, which was recorded with the Wide Field Camera 3 (WFC3) on board the Hubble Space Telescope. HAT-P-32b is one of the most inflated exoplanets discovered, making it an excellent candidate for transit spectroscopic measurements. To obtain the transit spectrum, we have adopted different analysis methods, both parametric and non-parametric (Independent Component Analysis, ICA), and compared the results. The final spectra are all consistent within 0.5σ. The uncertainties obtained with ICA are larger than those obtained with the parametric method by a factor of ∼1.6–1.8. This difference is the tradeoff for higher objectivity due to the lack of any assumption about the instrument systematics compared to the parametric approach. The ICA error bars are therefore worst-case estimates. To interpret the spectrum of HAT-P-32b we used -REx, our fully Bayesian spectral retrieval code. As for other hot Jupiters, the results are consistent with the presence of water vapor (log H O 3.45 2 1.65 1.83 = - - + ), clouds (top pressure between 5.16 and 1.73 bar). Spectroscopic data over a broader wavelength range are needed to de-correlate the mixing ratio of water vapor from clouds and identify other possible molecular species in the atmosphere of HAT-P-32b

    ExoGAN: Retrieving Exoplanetary Atmospheres Using Deep Convolutional Generative Adversarial Networks

    Get PDF
    Atmospheric retrievals on exoplanets usually involve computationally intensive Bayesian sampling methods. Large parameter spaces and increasingly complex atmospheric models create a computational bottleneck forcing a trade-off between statistical sampling accuracy and model complexity. It is especially true for upcoming JWST and ARIEL observations. We introduce ExoGAN, the Exoplanet Generative Adversarial Network, a new deep-learning algorithm able to recognize molecular features, atmospheric trace-gas abundances, and planetary parameters using unsupervised learning. Once trained, ExoGAN is widely applicable to a large number of instruments and planetary types. The ExoGAN retrievals constitute a significant speed improvement over traditional retrievals and can be used either as a final atmospheric analysis or provide prior constraints to subsequent retrieval

    A population study of gaseous exoplanets

    Get PDF
    We present here the analysis of 30 gaseous extrasolar planets, with temperatures between 600 and 2400 K and radii between 0.35 and 1.9 RJupR_\mathrm{Jup}. The quality of the HST/WFC3 spatially scanned data combined with our specialized analysis tools allow us to study the largest and most self-consistent sample of exoplanetary transmission spectra to date and examine the collective behavior of warm and hot gaseous planets rather than isolated case-studies. We define a new metric, the Atmospheric Detectability Index (ADI) to evaluate the statistical significance of an atmospheric detection and find statistically significant atmospheres around 16 planets out of the 30 analysed. For most of the Jupiters in our sample, we find the detectability of their atmospheres to be dependent on the planetary radius but not on the planetary mass. This indicates that planetary gravity plays a secondary role in the state of gaseous planetary atmospheres. We detect the presence of water vapour in all of the statistically detectable atmospheres, and we cannot rule out its presence in the atmospheres of the others. In addition, TiO and/or VO signatures are detected with 4σ\sigma confidence in WASP-76 b, and they are most likely present in WASP-121 b. We find no correlation between expected signal-to-noise and atmospheric detectability for most targets. This has important implications for future large-scale surveys.Comment: 14 pages, 12 figures, 3 tables, published in A

    A better characterization of the chemical composition of exoplanets atmospheres with ARIEL

    Get PDF
    Since the discovery of the first extrasolar planet more than twenty years ago, nearly four thousand planets orbiting stars other than the Sun (http://exoplanet.eu/) have been discovered. Current observational instruments (on board the Hubble Space Telescope, Spitzer, and on ground-based facilities) have allowed the scientific community to obtain important information on the physical and chemical properties of these planets. However, for a more in-depth characterisation of these worlds, more powerful telescopes are needed. Thanks to the high sensitivity of their instruments, the next generation of space observatories (e.g. JWST, ARIEL) will provide observations of unprecedented quality, allowing us to extract far more information than what was previously possible. Such high quality observations will provide constraints on theoretical models of exoplanet atmospheres and lead to a greater understanding of their physics and chemistry. Important modelling efforts have been carried out during the past few years, showing that numerous parameters and processes (such as the elemental abundances, temperature, mixing, etc.) are likely to affect the atmospheric composition of exoplanets and subsequently the observable spectra. In this manuscript, we review the different parameters that can influence the molecular composition of exoplanet atmospheres. We show that the high-precision of ARIEL observations will improve our view and characterisation of exoplanet atmospheres. We also consider future developments that are necessary to improve atmospheric models, driven by the need to interpret the available observations

    Charge Distributions in Metallic Alloys: a Charge Excess Functional theory approach

    Full text link
    Charge Distributions in Metallic Alloys: a Charge Excess Functional theory approachComment: 13 pages, 5 figure

    A new dynamical modeling of the WASP-47 system with CHEOPS observations

    Get PDF
    Among the hundreds of known hot Jupiters (HJs), only five have been found to have companions on short-period orbits. Within this rare class of multiple planetary systems, the architecture of WASP-47 is unique, hosting an HJ (planet-b) with both an inner and an outer sub-Neptunian mass companion (-e and -d, respectively) as well as an additional non-transiting, long-period giant (-c). The small period ratio between planets -b and -d boosts the transit time variation (TTV) signal, making it possible to reliably measure the masses of these planets in synergy with the radial velocity (RV) technique. In this paper, we present new space- and ground-based photometric data of WASP-47b and WASP-47-d, including 11 unpublished light curves from the ESA mission CHaracterising ExOPlanet Satellite (CHEOPS). We analyzed the light curves in a homogeneous way together with all the publicly available data to carry out a global N-body dynamical modeling of the TTV and RV signals. We retrieved, among other parameters, a mass and density for planet -d of Md = 15.5 ± 0.8 M⊕ and ρd = 1.69 ± 0.22 g cm−3, which is in good agreement with the literature and consistent with a Neptune-like composition. For the inner planet (-e), we found a mass and density of Me = 9.0 ± 0.5 M⊕ and ρe = 8.1 ± 0.5 g cm−3, suggesting an Earth-like composition close to other ultra-hot planets at similar irradiation levels. Though this result is in agreement with previous RV plus TTV studies, it is not in agreement with the most recent RV analysis (at 2.8σ), which yielded a lower density compatible with a pure silicate composition. This discrepancy highlights the still unresolved issue of suspected systematic offsets between RV and TTV measurements. In this paper, we also significantly improve the orbital ephemerides of all transiting planets, which will be crucial for any future follow-up

    Exoplanet spectroscopy and photometry with the Twinkle space telescope

    Get PDF
    The Twinkle space telescope has been designed for the characterisation of exoplanets and Solar System objects. Operating in a low Earth, Sun-synchronous orbit, Twinkle is equipped with a 45 cm telescope and visible (0.4 – 1 μm) and infrared (1.3 – 4.5 μm) spectrometers which can be operated simultaneously. Twinkle is a general observatory which will provide on-demand observations of a wide variety of targets within wavelength ranges that are currently not accessible using other space telescopes or accessible only to oversubscribed observatories in the short-term future. Here we explore the ability of Twinkle’s spectrometers to characterise the currently-known exoplanets. We study the spectral resolution achievable by combining multiple observations for various planetary and stellar types. We also simulate spectral retrievals for some well-known planets (HD 209458 b, GJ 3470 b and 55 Cnc e). From the exoplanets known today, we find that with a single transit or eclipse, Twinkle could probe 89 planets at low spectral resolution (R 20) in channel 1 (1.3 – 4.5 μm). With 10 observations, the atmospheres of 144 planets could be characterised with R 20. By stacking 10 transits, there are 1185 potential targets for study at R < 20 as well as 388 planets at higher resolutions. The majority of targets are found to be large gaseous planets although by stacking multiple observations smaller planets around bright stars (e.g. 55 Cnc e) could be observed with Twinkle. Photometry and low resolution spectroscopy with Twinkle will be useful to refine planetary, stellar and orbital parameters, monitor stellar activity through time and search for transit time and duration variations (TTVs and TDVs). Refinement of these parameters could be used to in the planning of observations with larger space-based observatories such as JWST and ARIEL. For planets orbiting very bright stars, Twinkle observations at higher spectral resolution will enable us to probe the chemical and thermal properties of an atmosphere. Simultaneous coverage across a wide wavelength range will reduce the degeneracies seen with Hubble and provide access to detections of a wide range molecules. There is the potential to revisit them many times over the mission lifetime to detect variations in cloud cover

    How to Pay for Public Education

    Get PDF
    For years now, public education, and especially public higher education has been under attack. Funding has been drastically reduced, fees increased, and the seemingly irresistible political force of ever-tightening austerity budgets threatens to cut it even more. But I am not going to take the standard line that government financial support for public higher education should be increased. I view that battle as already lost. What I am going to propose is that we stop arguing about the allocation or reallocation of ever more scarce public resources and think of another way to fund public higher education. It's time for a new approach, one that satisfies the left's claim that higher education should be affordable for all, yet one that does not involve increasing expenditure of public funds or commit the government to entitlement programs that it cannot now or at least cannot long afford. What we need is a new proposal that is acceptable to both sides if we are to bring public education into the twenty-first century. And this is what this paper is devoted to providin
    corecore