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Abstract

Atmospheric retrievals on exoplanets usually involve computationally intensive Bayesian sampling methods.
Large parameter spaces and increasingly complex atmospheric models create a computational bottleneck forcing a
trade-off between statistical sampling accuracy and model complexity. It is especially true for upcoming JWST and
ARIEL observations. We introduce ExoGAN, the Exoplanet Generative Adversarial Network, a new deep-learning
algorithm able to recognize molecular features, atmospheric trace-gas abundances, and planetary parameters using
unsupervised learning. Once trained, ExoGAN is widely applicable to a large number of instruments and planetary
types. The ExoGAN retrievals constitute a significant speed improvement over traditional retrievals and can be
used either as a final atmospheric analysis or provide prior constraints to subsequent retrieval.

Key words: methods: statistical – planets and satellites: atmospheres – radiative transfer – techniques:
spectroscopic

1. Introduction

The modeling of exoplanetary atmospheric spectroscopy
through so-called atmospheric retrieval algorithms has become
the accepted standard in the interpretation of transmission and
emission spectroscopic measurements (e.g., Rocchetto et al. 2016;
Barstow et al. 2017; Sheppard et al. 2017; Bruno et al. 2018;
Kreidberg et al. 2018; Mansfield et al. 2018; Spake et al.
2018; Tsiaras et al. 2018). These retrieval algorithms are designed
to solve the often ill-posed inverse problem of determining
atmospheric parameters (such as trace gas abundances) from the
measured spectra and their corresponding measurement uncer-
tainties (e.g., Irwin et al. 2008; Madhusudhan & Seager 2009;
Benneke & Seager 2013; Line et al. 2013; Cubillos et al. 2016;
Lavie et al. 2017; Gandhi & Madhusudhan 2018). The associated
atmospheric forward model to be fitted varies in complexity
from retrieval to retrieval, but most times encompass a high
dimensional likelihood space to be sampled. In the era of
JWST (Gardner et al. 2006) and ARIEL (Tinetti et al. 2016)
observations, said model complexity will have to increase
significantly. To date, the most commonly adopted statistical
sampling methods are Nested Sampling (Skilling 2004; Feroz &
Hobson 2008; Feroz et al. 2009) and Markov Chain Monte Carlo
(e.g., Gregory 2011). These approaches typically require of the
order of 105–106 forward model realizations until convergence.
The traditional analysis method, which uses Bayesian statistics,
creates a precarious bottleneck: to achieve convergence within
reasonable time frames (hours to days), we require the atmo-
spheric forward model to be fast and consequently overly
simplistic. The inclusion of disequilibrium chemistry, self-
consistent cloud models, and the move from one-dimensional
(1D) to two- or three-dimensional (2D, 3D) radiative transfer, are
largely precluded by this constraint. In this paper, we present the
first deep-learning architecture for exoplanetary atmospheric

retrievals and discuss a path toward solving the computational
bottleneck using atmospheric retrievals assisted by deep
learning.
Artificial Intelligence has been used extensively to under-

stand and describe complex structures and behavior in a wide
variety of data sets across a plethora of research fields.
In recent years, the field of exoplanets has seen pioneering

deep-learning papers on planet detection (Pearson et al. 2018;
Shallue & Vanderburg 2018), exoplanet transit prediction
(Kipping & Lam 2017), and atmospheric spectral identification
Waldmann (2016). In Waldmann (2016), we applied a deep-
belief neural network (DBN) to recognize the atmospheric
features of an exoplanetary emission spectrum. This approach
provided a qualitative understanding of the atmospheric trace
gases likely to be present in a planetary emission spectrum, to
then be included in our atmospheric retrieval framework
TauREx (Waldmann et al. 2015a, 2015b). In this paper, we
introduce a generative adversarial network (GAN; Goodfellow
et al. 2014) to predict the maximum likelihood (ML) of the full
retrieval solution given the observed spectrum. As shown in the
following sections, this can be used as a stand-alone solution to
retrieval or used to constrain the prior parameter ranges for a
more standard atmospheric retrieval later.
We designed our algorithm following four guiding

principles:

1. Once trained, the deep- or machine-learning algorithm
should apply to the widest possible range of planet types.

2. Once trained, the algorithm should apply to a wide range
of instruments.

3. The algorithm should be robust in the presence of
unknown “un-trained” features and be able to generalize
to parameter regimes outside its formal training set.

4. The design of the algorithm and data format should be
modular and easily modifiable and expandable.

In the following sections, we present the Exoplanet
Generative Adversarial Network (ExoGAN) algorithm and
demonstrate it on a variety of retrieval scenarios. We provide
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the ExoGAN algorithm freely to the community (see end of
this paper).

2. Method

In the following sections, we will introduce GANs and deep
convolutional generative adversarial networks (DCGANs),
followed by a discussion on how we adopt DCGANs for
exoplanetary retrievals.

2.1. Generative Adversarial Networks

Generative Adversarial Networks first introduced by Good-
fellow et al. (2014) belong to the class of unsupervised deep
generative neural networks (Goodfellow et al. 2016). Deep
generative models can learn the arbitrarily complex probability
distribution of a data set, pdata, and can generate new data sets
drawn from pdata. Similarly, they can also be used to fill in
missing information in an incomplete data set, so-called
inpainting. In this work, we use the data inpainting properties
of the GAN to perform retrievals of the atmospheric forward
model parameters.

The most common analogy for a GAN architecture is that of
a counterfeit operation. The neural network is given a training
data set, x, in our case combinations of atmospheric spectra
with their associated forward model parameters. We refer to the
training set as the “real” data with the probability distribution
pdata. Now two deep neural networks are pitted against each
other in a minmax game. One network, the generator network
(G), will try to create a “fake” data set (pg), indistinguishable
from the “real” data. In a second step, a second neural network,
the discriminator (D), tries to classify “fake” from “real” data
correctly. The training phase of the GAN is completed when a
Nash equilibrium is reached, and the discriminator cannot
identify real from fake any longer. At this stage, the generator
network will have learned a good representation of the data
probability distribution and pg ; pdata. Figure 1 shows a
schematic of our GAN implementation. Unlike for variational
inference methods, such as variational autoencoders (VAE;
Kingma & Welling 2013; Jimenez Rezende et al. 2014), the
functional form of the data likelihood does not need to be
specified but is learned by the Generator. Such implicit latent
variable models or likelihood-free networks allow the learning
of arbitrarily complex probability distributions in an unsuper-
vised manner while assuming minimal prior assumptions on the
data distribution.

GANs have been applied to multiple problems, such as semi-
supervised learning, stabilizing sequence learning methods for
speech and language, and 3D modeling (Denton et al. 2015;
Radford et al. 2015; Lamb et al. 2016; Salimans et al. 2016;
Wu et al. 2016). Notable examples of GANs applied in an
astrophysical context are given by Rodriguez et al. (2018),
Stark et al. (2018), and Schawinski et al. (2017), who used
GANs trained on existing N-body simulations to efficiently
generate new, physically realistic realizations of the cosmic
web, learn Point Spread Function from data or de-noise
ground-based observations of galaxies.

In the field of exoplanets, the use of GANs or similar deep
architectures has not yet been explored. In this work, we base
ExoGAN on a Deep Convolutional Generative Adversarial
Network (DCGAN; Radford et al. 2015).

DCGANs are an evolution from the classical GAN by
replacing the multilayer perceptrons (MLPs; Rumelhart et al.
1986; Bengio 2009) in the Generator and Discriminator
networks with all convolutional layers. Their characteristics
makes DCGAN significantly more robust to discrete-mode and
manifold model collapse (Metz et al. 2016; Arjovsky &
Bottou 2017) and are found to be stable in most training
scenarios (Radford et al. 2015). The use of batch normalization
(Appendix B) further increases training speed and robustness.
Besides, we note that convolutional networks are ideally suited
to capturing the highly correlated signals of broad, roto-
vibrational spectral bands in NIR and IR wavelengths.

2.2. Adversarial Training

As described in the previous section, both Generator and
Discriminator networks are pitted against one another during
training. The goal of the training phase is to reach a Nash
Equilibrium, i.e., when neither player can improve by unilaterally
changing one’s strategy. Figure 1 shows a schematic of the
ExoGAN setup.
In order to return the generator distribution pg over the data

x, we start from a prior distribution of Gaussian-distributed
latent variables zp( ) and define zG ; Gq( ) as the mapping from
latent variable space to generated data. Here Gq are the
hyperparameters of the Generator network (see Appendix A).
Let xD( ) be the probability that x came from the data rather

than pg. Hence, in the state of convergence, we have pg=pdata
and xD 1

2
=( ) . In the training phase, we need D to maximize

the probability of assigning the correct label to both training
examples and samples from G. At the same time, we want G to
minimize the probability zD Glog 1 -( ( ( ))). We can now
define the cross-entropy cost function of the Discriminator as:
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Since the discriminator wants to minimize the cost function
and the generator wants to maximize it, we can summarize
the training as a zero-sum game where the cost function for
the generator is given by: J(G)=−J(D). Hence, to capture the
entire game, we only need to specify the loss function of the
Discriminator since it encompasses both Dq( ) and Gq( )

hyperparameters. We then optimize the value function
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As stated earlier, Equation (4) constitutes a minmax game
since it involves minimizing over G in an outer loop and
maximizing over D in an inner loop.

2.3. Application to Exoplanet Spectra

Here we explain the data format of the input and training
data. In Figure 2 we show an example a transmission spectrum
of a cloud-free hot-Jupiter with water as the only trace gas at
3·10−4 volume mixing ratio at a constant resolution of

100=l
l
D . We train ExoGANon a wavelength range of
0.3−50 μm. For this paper, we restrict our sampling resolution
to be R=100 for every spectrum. This choice, however, does
not preclude training with higher-resolution data in the future.

2.3.1. Normalization

For the neural network to learn efficiently, we must normalize
the data to lie between zero and unity. We have experimented
with various normalization schemes. The most obvious scheme is
a “global” normalization, where we normalize the full training set
by its global maximum and minimum values. This approach
proved problematic as spectral signatures for planets with low
trace-gas abundances and small atmospheric scale heights would
be too weak/flat to be recognizable by the neural network for
reasonable training times. We have therefore opted to normalize
each training spectrum to amplify the spectral features. Assuming
that the most common broadband absorber is water in an
exoplanetary atmosphere, we divide the spectral range along its
major water bands in the IR, see dashed red lines in Figure 2. Note
that this does not mean that water-free atmospheres cannot be

Figure 1. The ExoGAN scheme. The Generator produces data sets sampling from a latent variable space z. The Discriminator compares the generated data set with
data drawn from the training set (top left). The network has converged when the Discriminator cannot differentiate Real spectra from Generated Spectra any longer.

Figure 2. Spectral binning used in this work. The black line is a simulated spectrum of the hot-Jupiter HD 189733b. The red vertical lines represent the bin edges of
prominent water bands. The blue and orange areas are the Hubble/WFC3 and JWST band-passes considered in this paper, respectively.
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detected. Additionally, we divide the spectrum by the pass-bands
of the JWST/NIRISS, NIRCam, and MIRI instruments (Kalirai
2018) and the Hubble/WFC3 instrument passband. In total, we
have 14 spectral bands. We now normalize each spectral band
between 0 and 1 and record the minimum and maximum
normalization factors for each. This normalization scheme ensures
a maximum amplification of the spectral features while retaining
reversibility.

2.3.2. The Atmospheric Spectrum and Parameters Array (ASPA)

To store all aspects of an atmospheric transmission spectrum,
we define the Atmospheric Spectrum and Parameters Array
(ASPA). It is a 2D array encoding the 1D normalized spectral
bands, each band’s minimum and maximum normalization factors
and the associated forward model parameter values. We
parameterize each training spectrum with seven forward model
parameters, f, namely: H2O, CO2, CH4 and CO volume mixing
ratios, the mass of the planet Mp, the radius Rp, and its isothermal
temperature Tp at the terminator. Figure 3 shows a false-color
ASPA. For this paper, the ASPA is a 33×33 pixel array, with the
main part (Section 1) encoding the spectral information.
Sections 2–5 encode the normalization factors and 6–12 the
atmospheric parameters. By design, the planet’s water abundance
takes a significantly large range area of the ASPA, reflecting the
relative importance of water in forming the spectral continuum.
The ASPA format is adaptable to other configurations in the future.

2.4. The Training

To train ExoGANon a wide range of possible exoplanetary
atmospheres, we generated a very comprehensive training set

of atmospheric forward models using the TauREx retrieval
code (Waldmann et al. 2015a, 2015b). We sampled each of the
seven previously mentioned forward model parameters (H2O,
CO2, CH4, and CO abundances, the mass of the planet Mp, the
radius Rp, and the temperature Tp) 10 times within the
parameter ranges denoted in Table 1. This configuration yields
107 forward models, which are split into 90% training set and
10% test set. The test set is used to validate the accuracy of the
network on previously unseen data. As discussed later on, we
find this training set to be over-complete and only require a
smaller sub-set of the full training set for convergence.
During the training, we perform two training iterations of the

discriminator to every training step of the generator. We used
an NVIDIA TESLA V100 GPU with minibatch sizes of 64
training ASPAs. We required ∼9 hr per epoch on the V100
GPU and comparatively about three days on 20 CPU cores in
parallel. The convergences of the loss functions during the
training phase are shown in Figure 4. The full model setup can
be found in Appendix C (Tables 6 and 7). We tested three
different sizes of our latent variable space z, with zdim=50,
100, and 200. We found zdim=50 to yield significantly noisier
reconstructions at the end of one epoch of training, whereas no
discernible differences between zdim=100 and zdim=200
could be observed. We hence settled on zdim=100. We have
adopted a training minibatch size of 64 ASPAs and found no
significant effect of larger training batch sizes on network
convergence.

Figure 3. The Atmospheric Spectra and Parameters Array (ASPA). Each area
is dedicated to a particular atmospheric characteristic: Area 1 is the spectrum
between 1 and 50μm at resolution 100 normalized between 0 and 1 in each
spectral bin. Areas 2 to 5 give information about the normalization factors used
in the different section of the spectrum, clear and dark area give, respectively,
information about the maximum values and the minimum values. In areas 6 to
8, we encode the atmospheric trace-gas volume mixing ratios of CO2, CO, and
CH4 respectively. Areas 9 to 11 are, respectively Mp, Rp, and Tp. Area 12 gives
information on the H2O trace-gas volume mixing ratio.

Table 1
Parameters Boundary Condition Used to Generate the Training Set

Training Set Parameters

Variable Lower Bound Upper Bound

H2O 10−8 10−1

CO2 10−8 10−1

CO 10−8 10−1

CH4 10−8 10−1

Mp 0.8 MJ 2.0 MJ

Rp 0.8 RJ 1.5 RJ

Tp 1000 K 2000 K

Note.Each parameter has been divided into 10 parts and used to model 107

different spectra.

Figure 4. Discriminator (golden) and Generator (blue) cross-entropies as
function of the iteration steps.

4

The Astronomical Journal, 156:268 (14pp), 2018 December Zingales & Waldmann



During minibatch training, the algorithm is presented with a
sub-set of the full training data (in this case 64 ASPAs) rather
than the full training set (or batch). This eases memory
requirements of large training set, in particular for memory-
limited devices such as GPUs. By only considering a sub-set of
training data at a time, a gradient descent optimizer, such as
ADAM, is still able to perform well, despite the increase in
variance on the gradient estimated. In order to avoid biased
estimations and convergence to local minima, minibatches
must be selected randomly from the training set at each
iteration.

2.5. Data Reconstruction

Once we have trained ExoGAN, we can now define our
“retrieval” model. As alluded to above, we use the inpainting
properties of a GAN to complete the missing data, in this case,
the forward model parameters, in our ASPA. In other words, we
convert our observed spectrum into the ASPA format and keep
unknown values (parameters and missing wavelength ranges)
masked. Given the information available, the ExoGANwill then
attempt to fill in the missing information to complete the full
ASPA. Here we follow the semantic inpainting algorithm by
Yeh et al. (2016).

We can define our reconstructed data, xrecon, from the
incomplete observed data, y, using

x y zM M G1 5recon = + - ( ) (ˆ) ( )

where M is a binary mask set to zero for missing values in y,
i.e., forward model parameter values and, possibly, missing
wavelength ranges. Here, e constitutes the Hadamard product
and zG (ˆ) is the GAN generated data. We note that after the
ExoGANhas been trained, z represents an encoding manifold
of pdata and we denote the closest match of zM G( ( )) to

yM ( ) with ẑ, where z zÍˆ . The aim is now to obtain ẑ that
accurately completes xrecon.
Let us define the following optimization.

z zarg min . 6
z
=ˆ ( ) ( )

where  is a loss function of z that finds its minimum when ẑ is
reached. Following Yeh et al. (2016), we define the loss
function to be comprised of two parts, contextual loss and
perceptual loss,

z z . 7cont perc  l= +( ) ( ) ( )

The contextual loss, zcont ( ) is the difference between the
observed data and the generated data. Here we follow the
definition by Amos (2016):

z zM G M y . 8cont 1 = -   ( ) ( ) ( )

Empirically, Yeh et al. (2016) find the l1 norm to yield
slightly better results, though the l2 norm can equally be used.
Whereas the conceptual loss compares the generated data with
the observed data directly, the perceptual loss, zperc ( ), uses the

Figure 5. Left: input spectrum together with the parameters pixels. Center: masked ASPA leaving Hubble/WFC3 wavelengths only. Right: ExoGAN completed
ASPA given the middle ASPA.

Figure 6. Same as Figure 5 but only masking the atmospheric forward model parameters.
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discriminator network to verify the validity of the generated
data given the training set.

z zD Glog 1 . 9perc = -( ) ( ( ( ))) ( )

To solve Equation (6), we use the ADAM optimizer
(Kingma & Ba 2014) with a learning rate of 0.1. For a deeper
discussion about the ADAM optimizer, see Appendix C.

We investigated the ratio of perceptual loss (Equation (9)) to
contextual loss (Equation (8)) and found λ=0.1 to be optimal
but note that λ>0.1 gives too much emphasis to the
perceptual loss term and yielded less reliable results.

In Figures 5 and 6, we show the three phases associated
to a prediction: Left, the ground truth; Middle: the masked
spectrum/parameters; Right: the reconstructed ASPA. Figure 7
shows a water-dominated atmosphere of a test-set hot-Jupiter
(black) and the ExoGAN reconstructed spectrum based on the
Hubble/WFC3 bandpass only (red). We find a very good
agreement between reconstructed and ground-truth spectra.

3. Atmospheric Parameter Retrieval

To retrieve the atmospheric forward model parameters, we
assume the observational uncertainties on the spectrum to be
Gaussian distributed. We then generate 1000 noisy instances of
the observed spectrum, xi(λ), by sampling from a normal
distribution with a mean of x(λ) and standard deviation σλ.
From these noisy spectrum instances, we generate 1000
corresponding ASPAs with missing information (may they be
parameters, spectral ranges or both) masked. We now let
ExoGAN predict and inpaint these ASPAs. Finally, we collect
all parameter predictions and calculate the mean and standard
deviation of the resulting distribution. Hence, the resulting
distributions are not posterior distributions derived from a
Nested or MCMC sampling atmospheric retrieval, but are
conceptually more similar to running a retrieval based on
optimal-estimation multiple times and collecting the distribu-
tion of results.

4. Accuracy Tests

We defined the accuracy of the retrieved parameter, A, as the
function of the ground-truth parameter value, f, the retrieved
value, frecon, and its corresponding error σf,

A
N

,
1

. 10
i

N
i i

i

,recon
2

2 2
i

å
f f

f
f s

s
=

-

+
f

f
( )

( )
( )

where N is the number of reconstructed ASPA instances.

We compute the reconstruction accuracies for 1000
randomly selected planets for each, the test and training sets.
The accuracies are summarized in Tables 2 and 3 for 0σ (an
exact match), 1σ, and 2σ confidence intervals. Figure 8 shows
an example of the parameter distributions retrieved for a test-
case planet.

4.1. Comparison with a Classical Retrieval Model

In this section, we compare the ExoGAN results with a
“classical” retrieval result obtained with the TauREx retrieval
code. For this comparison and tests in subsequent sections, we
used as example the hot-Jupiter HD 189733b with planetary/
orbital parameters taken from Torres et al. (2008), Butler et al.
(2006) and atmospheric chemistry based on Venot et al. (2012),
see Table 4.
We now retrieve the forward model parameters for both

TauREx and ExoGAN for spectra across the Hubble/WFC3
only band and a broad (0.3–15 μm) wavelength band. Here, the
Hubble/WFC3 spectrum was taken from Tsiaras et al. (2018)
and interpolated to the ExoGAN resolution using a quadratic
interpolation (Figure 9). The large wavelength range spectrum
is synthetic, based on Table 4.
In Figure 10 we compare both sets of results. The Hubble/

WFC3 and large wavelength retrievals are shown with square
and circular markers, respectively. In both cases, the ExoGAN
predictions are consistent with the TauREx retrievals within the
error bars. We note that in the case of CO in the Hubble/WFC3
data, neither TauREx nor ExoGAN feature detections as
expected.

Figure 7. Spectral reconstruction of ExoGAN of a water-dominated Hubble/
WFC3 spectrum. Black: the ground-truth spectrum; Red: the ExoGAN
reconstructed spectrum across all wavelengths giving as input only the
Hubble/WFC3 bandpass.

Table 2
ExoGAN Prediction Accuracies Associated to Each Parameters for the

Training Set

Training Set Parameters

Variable A(0σf) A(1σf) A(2σf)

CO 64.4% 74.9% 80.8%
CO2 93.7% 96.4% 97.3%
H2O 86.3% 92.9% 94.8%
CH4 80.3% 88.4% 91.9%
Rp 99.8% 99.8% 99.8%
Mp 88.8% 90.5% 91.6%
Tp 89.4% 91.9% 93.1%

Note.The A(0σf) column represents the absolute accuracy of the prediction
without taking into account the error bar of the retrieval. The second and third
columns are taking into account the 1σ and 2σ retrieved errors following
Equation (10), respectively.

Table 3
Same as Table 2 but for the Test Set

Test Set Parameters

Variable A(0σf) A(1σf) A(2σf)

CO 62.8% 72.6% 78.2%
CO2 94.2% 96.6% 97.4%
H2O 89.6% 92.8% 93.9%
CH4 80.3% 88.2% 91.6%
Rp 100.0% 100.0% 100.0%
Mp 88.0% 89.7% 90.8%
Tp 90.4% 92.2% 93.2%
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Figure 8. ExoGAN parameter distribution of the default test planet. Blue vertical line: Mean predicted value; green vertical line: ground truth value; vertical dotted
lines: 1σ bounds estimated by ExoGAN.

Table 4
Test-case Atmospheric and Planetary Parameters Used Based on HD 189733b

Test Planet Parameters

Parameter Value

R* 0.752 Re

Rp 1.151 RJ

Mp 1.150 MJ

Tp 1117 K
H2O 3·10−4

CO 4·10−4

CO2 2·10−7

CH4 5·10−6

Note.The molecular abundances are given in volume mixing ratios.

Figure 9. Real HD 189733b observation with the Hubble WFC3 camera
(Tsiaras et al. 2018). The black points are the observed data and the green line
is the interpolated spectrum to the ExoGAN resolution.

Figure 10. Comparison between the ExoGAN predictions (red points) and
TauREx (black points). For the molecules, we show the value −log(mixing
ratio). The squared points show the results for a real spectrum of HD 189733b
using Hubble/WFC3. The round points are the results for a synthetic model of
HD 189733b between 0.3 and 15 μm. The results from the two retrievals are in
both cases consistent with each other within the error bars.

Table 5
Summary of All the Robustness Test Results

Robustness Results

Variable Clouds Unknown Gases T Offscale
Input ExoGAN Input ExoGAN Input ExoGAN

log(CO) −3.4 4.12.5
3.1- <−8 5.71.4

1.8- −3.4 3.13.8
0.4-

log CO2( ) −6.7 6.01.7
2.3- 8<- 5.51.8

3.9- −6.7 5.60.2
4.4-

log H O2( ) −3.5 3.63.0
1.1- −3.5 3.33.5

0.7- −3.5 2.94.1
0.2-

log CH4( ) −5.3 6.71.1
1.6- 8<- 5.51.9

2.0- −5.3 5.11.1
2.1-

Rp (RJ) 1.15 1.180.01
0.01 1.15 1.140.01

0.01 1.15 1.160.01
0.02

Mp (MJ) 1.15 1.230.42
0.59 1.15 1.390.49

0.43 1.15 1.600.7
0.2

Tp (K) 1117 1681208
153 1117 1689506

179 2500 17446.4
157

Note.For each value we show the input value used for the spectrum and the
predicted result from ExoGAN. For the unknown gases test, we used ammonia
with a volume mixing ratio of 10−4.
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We then generated a second synthetic spectrum of
HD 189733b between 0.3 and 15 μm, using the parameters of
Venot et al. (2012) and overplotted the TauREx retrieved
posterior distributions with those derived by ExoGAN, Figure 11.
Both algorithms converge to the same solution with the ExoGAN
results showing a broader distribution. The only significant
difference is the CO abundance, where the ExoGAN abundances
are higher. Note that both TauREx and ExoGAN show tails in
their CO abundance posteriors indicating the difficulties of
retrieving CO even for classical retrieval algorithms.

Comparisons of runtime are remarkable. Using the TauREx
Retrieval code with seven free parameters, a standard nested-
sampling analysis takes ∼10 hr on 24 CPU cores using
absorption cross-sections at a resolution of R=15000 and
spanning a large (0.3–15 μm) wavelength range. The trained
ExoGAN requires ∼2 minutes for the same analysis. This
result constitutes a speed up of ∼300 times and is independent
of the number of free parameters and of the resolution of the
input spectrum. Similarly, training ExoGAN on higher-
resolution data does not significantly impact its runtime after

Figure 11. TauREx posterior distributions (in blue) compared to a ExoGAN prediction (in golden). As input spectrum, we used a synthetic spectrum of HD 189733b
with planetary and atmospheric parameters from Venot et al. (2012) and a wavelength range of 0.3–15 μm. The two results are in agreement with each other.
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training as both the size and architecture of the underlying
network remain unchanged.

5. Robustness Tests

To test the limits of ExoGAN, we simulate three conditions
previously encountered by the network. We use the same
example planet as in the previous section (Table 4) and
simulate the following three scenarios unseen by ExoGAN
during training phase:

1. the presence of clouds;
2. the addition of a trace gas unknown to the network;
3. atmospheric temperatures outside the training range.

Each test is discussed below, and the ExoGAN predicted
abundances versus the ground-truth are summarized in Table 5.
Furthermore, we test the ExoGAN’s robustness against varying
signal-to-noise ratio (S/N) levels of the observed spectrum.

5.1. Presence of Clouds

Here we test the response of ExoGAN to the presence of
clouds in the atmospheric spectrum. We simulate a gray cloud
deck at 10 mbar pressure (Figure 12) and let ExoGAN
reconstruct the atmospheric parameters (see Figure 13). The
lack of information due to the clouds’ presence results in a
wider distribution of parameters. However, ExoGAN is still
able to retrieve all trace-gas abundances within 1σ confidence.
We find that temperature estimates can be overestimated. This
result is likely a consequence of the normalization procedure
used in the presence of clouds.

5.2. Presence of Molecules Outside of the Training Set

In this test, we simulate the impact of unknown features on the
retrievability of known trace gases. We here consider a spectrum
containing water at the default test value and NH3 with a mixing
ratio of 10−4. Though Venot et al. (2012) estimated an
NH3 mixing ratio of 10−6, we use an unrealistically high value

Figure 12. Simulated spectra of the default test planet HD 189733b without clouds (left) and with gray clouds at 10 mbar cloud top pressure (right).

Figure 13. Same as Figure 8 but for the clouds’ robustness test for the default test planet, Section 5.1.
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as a worst-case scenario. By removing all other trained trace
gases but water, we also test for spurious detections in non-
existing trace gases. Figure 14 shows the ExoGAN parameter
distributions. We find the network to recognize the absence of
trace gases, and it does not detect “false positives”, while still
recovering the exact mixing ratio of H2O.

5.3. Parameters Outside the Training Range

In the third robustness test, we simulated a default planetary
atmosphere but an effective temperature of 2500 K—500 K
above the temperature training range. In this test, as shown in
Figure 15, all parameters converge toward the real solution
within 1σ, except for the planetary temperature. Here, the

Figure 14. Same as Figure 8 but for the ExoGAN analysis for a spectrum with only water and NH3, Section 5.2.

Figure 15. Same as Figure 8 but for the ExoGANanalysis for a planetary temperature at 2500 K—500 K outside the training range, see Section 5.3.
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network does not retrieve the correct temperature but assigns a
large error bar, suggesting that the temperature value is
unconstrained if the input value is not contained in the domain
range of ExoGAN.

5.4. Impact of Spectral Signal-to-noise

We test ExoGAN for varying levels of observational noise.
Here we take the default planet (Table 4) and add noise in steps
of 10 ppm in the range [0, 100] ppm. In Figure 16 we show
examples of spectra at σλ: 20, 50, 60, and 100 ppm noise levels.

For each noise level, we calculated the accuracy of the
prediction following Equation (10), but setting A(σf= 0),
Figure 17. We note that Figure 17 only shows the difference
between the predicted value and an exact match, and prediction
accuracies increase when retrieval error bars are taken into
account. Here we want to demonstrate the relative degradation
of the prediction accuracy as a function of σλ.

As intuitively expected, the noisier the spectra, the less
accurate the model. The radius of the planet can be easily
recognized by ExoGAN in the entire error range tested. The
most difficult parameters to identify are the CO abundance and
the mass of the planet.

6. Discussion

6.1. Training and Training Data

In this work, we used 107 forward models over seven
atmospheric forward model parameters. We found that this
training set is significantly over-complete and the ExoGAN
training can be completed successfully with ∼50 % of the
existing training set. Optimizing training in future iterations

will allow for the inclusion of more complex atmospheric
forward models.
One of the main difficulties for training neural networks with

transmission spectra is the normalization of the spectra in
Rp/R*. A consistent normalization across a broad range of
possible atmospheres is required during the training process,
but difficult to achieve in reality given strongly varying
atmospheric scale heights and trace-gas abundances. In this
work, we adopted a normalization based on instrument pass-
bands as well as water bands. Though in practice this approach
works for most scenarios, it can introduce biases when high-
altitude clouds are present. In these cases, we find that the
normalization procedure stretches the observed spectrum too
much, leading the network to identify higher atmospheric
temperatures than it otherwise would. In future work, we plan
to mitigate this effect by including gray clouds in the training
set as well as further refining the normalization scheme. We
note that for emission spectroscopy, a consistent normalization
is more readily achieved if the planetary and stellar equilibrium
temperatures are assumed to be known (Waldmann 2016).
ExoGAN has been trained on a large set of simulated

forward models. By including ExoGAN as an integral part in
the TauREx retrieval framework, we will be able to use forward
models created during a standard retrieval run (of the order of
105–106 models per retrieval) to perform online learning and
continuously improve the accuracy of ExoGAN over time.

6.2. Comparison with Other Machine-learning Architectures

In the previous sections, we have explored the use of
DCGANs to retrieve atmospheric parameters from observa-
tions. GANs belong to the class of semi-supervised and
unsupervised generative models, and since their inception, they

Figure 16. Four examples of spectra used to calculate the accuracy of the ExoGAN. The green line represents the input spectrum and the blue part is the area
representing the error bars, σλ in which we varied the input signal to simulate a noisy spectrum. In the top left panel, we see the 20 ppm error bars, and in the top right
panel, we see those for 50 ppm. In the bottom left panel we see the 60 ppm error bars, and in the bottom right, those for 100 ppm.
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have been subject to significant research. In this paper, our use
of DCGAN is unsupervised as we provide the parameters
together with the data to be modeled. Such an approach allows
for a high degree of flexibility in using ExoGAN, as we only
need to re-define the ASPA array to train on new problem sets.

Most other generative models require the likelihood function
of the data to be defined, something we do not intrinsically
know for many exoplanet observations, whereas GAN-based
models are likelihood-free methods and xpq ( ) does not need to
be computed during training. This characteristic has obvious
advantages over pure variational autoencoders, which require a
parameterized form of the probability space from which they
draw their latent variables.

While we have explored the use of GANs in the scope of this
paper, we note that other neural network architectures, such as
simpler deep believe networks or VAEs, may yield comparable
results. In fact, recent work by the 2018 NASA Frontier
Development Lab3 has explored various deep-learning archi-
tecture in the context of atmospheric retrievals with promising
results. Similarly, other machine-learning frameworks may also
be successfully used to model exoplanetary spectra. For
example, Márquez-Neila et al. (2018) recently presented an
atmospheric retrieval algorithm based on random forests
regression (Breiman 2001) and demonstrated the algorithm
on Hubble/WFC3 observations.

6.3. Future Work

In this work, we have used the “vanilla” DCGAN as
underlying algorithm. Since its inception, various interesting
additions to the classical GAN have been proposed, which we
intend to explore in future work. Notable among them are the
VAE-GAN hybrids, random forest and GAN hybrids, and
Bayesian-GAN models. The VAE-GAN models (e.g., Makh-
zani et al. 2015; Dosovitskiy & Brox 2016; Rosca et al. 2017;
Ulyanov et al. 2017) allow direct inference using GANs—
something that is not possible using purely generative models.
To further guard against model collapse, Zuo et al. (2018) have
recently proposed a random forest and GAN hybrid algorithm,
GAF, where the fully connected layer of the GAN’s
discriminator is replaced by a random forest classifier. Saatchi

& Wilson (2017) proposed a Bayesian-GAN by drawing
probability distributions over Dq( ) and Gq( ), allowing for fully
Bayesian predictive models and further guarding against model
collapse.

7. Conclusion

In the era of JWST and ARIEL observations, next-generation
atmospheric retrieval algorithms must reflect the higher
information content of the observation with an increase in
atmospheric model complexity. Complex models are compu-
tationally heavy, creating potential bottlenecks given current
state-of-the-art sampling schemes. Artificial intelligence
approaches will provide essential tools to mitigate the increase
in computational burden while maintaining retrieval accuracies.
In this work, we introduced the first deep-learning approach

to solving the inverse retrieval of exoplanetary atmospheres.
We trained a deep convolutional generative adversarial
network on an extensive library of atmospheric forward models
and their associated model parameters. The training set spans a
broad range of atmospheric chemistries and planet types. Once
trained, the ExoGAN algorithm achieves comparable perfor-
mances to more traditional statistical sampling based retrievals,
and the ExoGAN results can be used to constrain the prior
ranges of subsequent retrievals (to significantly cut computa-
tion times) or be used as stand-alone results. We found
ExoGAN to be up to 300 times faster than a standard retrieval
for large spectral ranges. ExoGAN is designed to be universally
applicable to a wide range of instruments and wavelength
ranges without additional training.

All codes used in this publication are open-access and their
latest versions are hosted at https://github.com/orgs/ucl-
exoplanets. Manuals and links to the training sets can be
found at http://exoai.eu.
Furthermore, the training data and the corresponding

ExoGAN software (at the time of paper acceptance) have been
assigned the DOI:10.17605/OSF.IO/6DXPS and are perma-
nently archived at https://osf.io/6dxps/. All data/software
pertaining to the ExoAI project (inc. TauREx) is archived here:
https://osf.io/tfyn6/.
The authors thank the anonymous referee for improving the

clarity of the paper. The authors also thank the UCL Exoplanet
team for insightful discussions. This project has received
funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation
programmes (grant agreement No. 758892/ExoAI and No.
776403/ExoplANETS A) and the European Union’s Seventh
Framework Programme (FP7/2007-2013) ERC grant agree-
ment No. 617119/ExoLights. The authors further acknowledge
funding from Microsoft Azure for Research and the STFC
grants ST/K502406/1 and ST/P000282/1. T.Z. also acknowl-
edges the contribution from INAF trough the “Progetti
Premiali” funding scheme of the Italian Ministry of Education,
University, and Research

Appendix A
ExoGAN Architecture and Parameters

ExoGANis made up of two neural networks, the generator
and the discriminator, whose parameters are shown in Table 6.

Figure 17. Accuracy as a function of spectral error bars, σλ. As discussed in the
text, we note that this figure does not take into account the retrieval error bar,
i.e., A(σf = 0) following Equation (10).

3 frontierdevelopmentlab.org
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Appendix B
Batch Normalization

A characteristic of DCGANs is the use of batch normal-
ization (BN; Ioffe & Szegedy 2015; Xiang & Li 2017). BN is
now a common technique in deep-learning applications to
accelerate the training of neural networks. DCGAN networks
(Radford et al. 2015) use BN for both the Discriminator and the
Generator nets. Nevertheless, GAN architectures started using
BN just for the generator net with the LAPGAN networks
(Denton et al. 2015). Nowadays, many GAN architectures use
BN. The idea behind BN is using a batch of samples
x x x, , ..., m1 2{ } and computing, keeping the notation of Xiang
& Li (2017), the following:

y
x

, 11i
i B

B

m
s

g b=
-

+· ( )

where μB and σB are, respectively, the mean and the standard
deviation of the batch, and γ and β are the learned parameters.
BN allows one to have an output with a mean μ and a standard
deviation σ independent of the input distribution.

Appendix C
The ADAM Optimizer

The Adaptive Moment Estimation (ADAM) is a very
popular algorithm in deep learning and it computes an adaptive
learning rate for the parameters of a neural network. It stores
the exponentially decaying average of past squared gradients vt
together with the exponentially decaying average of the past
gradients mt. Keeping the notation of Ruder (2016), the past

and the squared past gradients, mt and vt are defined as

m m g1 12t t t1 1 1b b= + -- ( ) ( )

and,

v v g1 , 13t t t2 1 2
2b b= + -- ( ) ( )

with β1 and β2 being the decay rates, and zgt z t=  ( ) the
gradient of the  function defined in Equation (7)
Equations (12) and (13) estimate, respectively, the mean (or

first moment) and the variance (or second moment) of the
gradients. Since the two moments are initialized as vectors of
0ʼs, they are biased toward zero, particularly during the first
time steps or when the decay rates β1 and β2 are small. To
correct the biases, Kingma & Ba (2014) defined the bias-
corrected moments as:

m
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At this point, it is possible to update the z variable using the
Adam update rule:

z z
v

m . 16t t
t

t1
h

e
= -

+
+

ˆ
ˆ ( )

We used the values suggested by Kingma & Ba (2014) for the
hyperparameters, shown in Table 7.

Table 6
Architecture of ExoGAN Listing the Hyperparameters Dq( ) and Gq( )

Layer Operation Output Dimension

Discriminator ( Dq( ))

X m·33·33·1
h0 conv leaky relu—batch norm m·17·17·64
h1 conv leaky relu—batch norm m·9·9·128
h2 conv leaky relu—batch norm m·5·5·256
h3 conv leaky relu—batch norm m·3·3·512
h4 linear sigmoid m·1

Generator ( Gq( ))

z m·100
h0 linear relu—batch norm m·3·3·512
h1 deconv relu—batch norm m·5·5·256
h2 deconv relu—batch norm m·9·9·128
h3 deconv relu—batch norm m·17·17·64
h4 deconv sigmoid m·33·33·1

Note.We used five-layer deep networks for both generator and discriminators. m is the batch size fixed to 64 during training.
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