99 research outputs found

    Methotrexate and vasculoprotection: Mechanistic insights and potential therapeutic applications in old age

    Get PDF
    Increasing age is a strong, independent risk factor for atherosclerosis and cardiovascular disease. Key abnormalities driving cardiovascular risk in old age include endothelial dysfunction, increased arterial stiffness, blood pressure, and the pro-atherosclerotic effects of chronic, low-grade, inflammation. The identification of novel therapies that comprehensively target these alterations might lead to a major breakthrough in cardiovascular risk management in the older population. Systematic reviews and meta-analyses of observational studies have shown that methotrexate, a first-line synthetic disease-modifying anti-rheumatic drug, significantly reduces cardiovascular morbidity and mortality in patients with rheumatoid arthritis, a human model of systemic inflammation, premature atherosclerosis, and vascular aging. We reviewed in vitro and in vivo studies investigating the effects of methotrexate on endothelial function, arterial stiffness, and blood pressure, and the potential mechanisms of action involved. The available evidence suggests that methotrexate might have beneficial effects on vascular homeostasis and blood pressure control by targeting specific inflammatory pathways, adenosine metabolism, and 5' adenosine monophosphate-activated protein kinase. Such effects might be biologically and clinically relevant not only in patients with rheumatoid arthritis but also in older adults with high cardiovascular risk. Therefore, methotrexate has the potential to be repurposed for cardiovascular risk management in old age because of its putative pharmacological effects on inflammation, vascular homeostasis, and blood pressure. However, further study and confirmation of these effects are essential in order to adequately design intervention studies of methotrexate in the older population

    Comprehensive arginine metabolomics and peripheral vasodilatory capacity in rheumatoid arthritis: A monocentric cross-sectional study

    Get PDF
    Background: The relationship between plasma arginine metabolites influencing vascular homeostasis and peripheral vasodilatory capacity in rheumatoid arthritis (RA) patients is not known. Methods: L-arginine (Arg), monomethyl-L-arginine (MMA), L-homoarginine (hArg), asymmetric dimethyl-L-arginine (ADMA), symmetric dimethyl-L-arginine, and L-citrulline (Cit) were measured by liquid chromatography tandem mass spectrometry (LC-MS/MS) in 164 RA patients and 100 age- and sex-matched healthy controls without previous cardiovascular events. Log-transformed reactive hyperemia index (Ln-RHI) evaluated by flow-mediated pulse amplitude tonometry (PAT, EndoPAT2000 device) was assessed as surrogate measure of peripheral vasodilatory capacity in RA patients. Ln-RHI values <0.51 indicated peripheral endothelial dysfunction (ED). The relationship between plasma arginine metabolite concentrations, RA descriptors and peripheral vasodilatory capacity was evaluated by bivariate correlation and regression analyses. Results: Plasma ADMA concentrations were significantly higher, and plasma hArg concentrations significantly lower, in RA patients than in controls (0.53 ± 0.09 vs 0.465 ± 0.07 μmol/L and 1.50 ± 0.60 vs 1.924 ± 0.78 μmol/L, respectively; p < 0.001 for both comparisons). Bivariate correlation analysis demonstrated no significant correlation between arginine metabolites and disease descriptors. In regression analysis in RA patients, higher plasma ADMA concentrations were independently associated with presence of ED [OR(95% CI) = 77.3(1.478–4050.005), p = 0.031] and lower Ln-RHI [B coefficient(95% CI) = −0.57(−1.09 to −0.05), p = 0.032]. Conclusions: ADMA was significantly, albeit weakly, associated with impaired microcirculatory vasodilatory capacity and peripheral endothelial dysfunction in RA. This suggests an important pathophysiological role of this metabolite in the vascular alterations observed in this patient group

    Simultaneous wireless and high-resolution detection of nucleus accumbens shell ethanol concentrations and free motion of rats upon voluntary ethanol intake

    Get PDF
    Highly sensitive detection of ethanol concentrations in discrete brain regions of rats voluntarily accessing ethanol, with high temporal resolution, would represent a source of greatly desirable data in studies devoted to understanding the kinetics of the neurobiological basis of ethanol's ability to impact behavior. In the present study, we present a series of experiments aiming to validate and apply an original high-tech implantable device, consisting of the coupling, for the first time, of an amperometric biosensor for brain ethanol detection, with a sensor for detecting the microvibrations of the animal. This device allows the real-time comparison between the ethanol intake, its cerebral concentrations, and their effect on the motion when the animal is in the condition of voluntary drinking. To this end, we assessed in vitro the efficiency of three different biosensor designs loading diverse alcohol oxidase enzymes (AOx) obtained from three different AOx-donor strains: Hansenula polymorpha, Candida boidinii, and Pichia pastoris. In vitro data disclosed that the devices loading H. polymorpha and C. boidinii were similarly efficient (respectively, linear region slope [LRS]: 1.98 ± 0.07 and 1.38 ± 0.04 nA/mM) but significantly less than the P. pastoris-loaded one (LRS: 7.57 ± 0.12 nA/mM). The in vivo results indicate that this last biosensor design detected the rise of ethanol in the nucleus accumbens shell (AcbSh) after 15 minutes of voluntary 10% ethanol solution intake. At the same time, the microvibration sensor detected a significant increase in the rat's motion signal. Notably, both the biosensor and microvibration sensor described similar and parallel time-dependent U-shaped curves, thus providing a highly sensitive and time-locked high-resolution detection of the neurochemical and behavioral kinetics upon voluntary ethanol intake. The results overall indicate that such a dual telemetry unit represents a powerful device which, implanted in different brain areas, may boost further investigations on the neurobiological mechanisms that underlie ethanol-induced motor activity and reward

    Sex differences in the associations between L-arginine pathway metabolites, skeletal muscle mass and function, and their responses to resistance exercise, in old age

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Objectives The current study was designed to explore the associations between L-arginine metabolites and muscle mass and function in old age, which are largely unknown. Design The study used a randomised, double-blind, placebo-controlled design. Setting The study was carried out in a laboratory setting. Participants 50 healthy older adults [median age 70 years (IQR 67-73); 27 males]. Intervention Participants undertook an 18-week resistance exercise program, and a nutritional intervention (fish oil vs. placebo). Measurements Serum homoarginine, ornithine, citrulline, asymmetric dimethylarginine (ADMA), NG-monomethyl-L-arginine (L-NMMA), and symmetric dimethylarginine (SDMA), maximal voluntary contraction (MVC) and isokinetic torque of the knee extensors at 30° s-1 (MIT), muscle cross sectional area (MCSA) and quality (MQ) were measured at baseline and after the intervention. Results No significant exercise-induced changes were observed in metabolite concentrations. There were significant sex differences in the associations between metabolites and muscle parameters. After adjusting for age, glomerular filtration rate and fish oil intervention, citrulline (P=0.002) and ornithine (P=0.022) were negatively associated with MCSA at baseline in males but not females. However, baseline citrulline was negatively correlated with exercise-induced changes in MVC (P=0.043) and MQ (P=0.026) amongst females. Furthermore, amongst males, baseline homoarginine was positively associated with exercise-induced changes in MVC (P=0.026), ADMA was negatively associated with changes in MIT (P=0.026), L-NMMA (p=0.048) and ornithine (P<0.001) were both positively associated with changes in MCSA, and ornithine was negatively associated with changes in MQ (P=0.039). Conclusion Therefore, barring citrulline, there are significant sex differences in the associations between L-arginine metabolites and muscle mass and function in healthy older adults. These metabolites might enhance sarcopenia risk stratification, and the success of exercise programs, in old age

    Serum methylarginines and spirometry-measured lung function in older adults

    Get PDF
    Rationale: Methylarginines are endogenous nitric oxide synthase inhibitors that have been implicated in animal models of lung disease but have not previously been examined for their association with spirometric measures of lung function in humans. Objectives: This study measured serum concentrations of asymmetric and symmetric dimethylarginine in a representative sample of older community-dwelling adults and determined their association with spirometric lung function measures. Methods: Data on clinical, lifestyle, and demographic characteristics, methylated arginines, and L-arginine (measured using LC-MS/MS) were collected from a population-based sample of older Australian adults from the Hunter Community Study. The five key lung function measures included as outcomes were Forced Expiratory Volume in 1 second, Forced Vital Capacity, Forced Expiratory Volume in 1 second to Forced Vital Capacity ratio, Percent Predicted Forced Expiratory Volume in 1 second, and Percent Predicted Forced Vital Capacity. Measurements and Main Results: In adjusted analyses there were statistically significant independent associations between a) higher asymmetric dimethylarginine, lower Forced Expiratory Volume in 1 second and lower Forced Vital Capacity; and b) lower L-arginine/asymmetric dimethylarginine ratio, lower Forced Expiratory Volume in 1 second, lower Percent Predicted Forced Expiratory Volume in 1 second and lower Percent Predicted Forced Vital Capacity. By contrast, no significant associations were observed between symmetric dimethylarginine and lung function. Conclusions: After adjusting for clinical, demographic, biochemical, and pharmacological confounders, higher serum asymmetric dimethylarginine was independently associated with a reduction in key measures of lung function. Further research is needed to determine if methylarginines predict the decline in lung function

    Circulating Concentrations of Key Regulators of Nitric Oxide Production in Undernourished Sheep Carrying Single and Multiple Fetuses

    Get PDF
    15 Pág.The aim of this study was to investigate the blood concentrations of L-arginine, asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), and L-homoarginine, which are regulators of nitric oxide (NO) synthesis, in single, twin, and triplet pregnancies in ewes undergoing either a dietary energy restriction or receiving 100% of their energy requirements. From day 24 to 100 of pregnancy, the ewes were fed ryegrass hay and two different iso-proteic concentrates fulfilling either 100% of ewes' energy requirements (control group; n = 30, 14 singleton pregnancies, 12 twin pregnancies, and 4 triplet pregnancies) or only 45% (feed-restricted group; n = 29; 11 singleton pregnancies, 15 twin pregnancies, and 3 triplet pregnancies). Blood samples were collected monthly to measure, by capillary electrophoresis, the circulating concentrations of arginine, ADMA, homoarginine, SDMA, and of other amino acids not involved in NO synthesis to rule out possible direct effects of diet restriction on their concentrations. No differences between groups were observed in the circulating concentrations of most of the amino acids investigated. L-homoarginine increased markedly in both groups during pregnancy (p < 0.001). SDMA (p < 0.01), L-arginine, and ADMA concentrations were higher in feed-restricted ewes than in controls. The L-arginine/ADMA ratio, an indicator of NO production by NOS, decreased towards term without differences between groups. The ADMA/SDMA ratio, an index of the ADMA degrading enzyme activity, was higher in controls than in feed-restricted ewes (p < 0.001). Obtained results show that circulating concentrations of L-arginine, of its metabolites, and the ratio between NO synthesis boosters and inhibitors are altered in energy-restricted ewes, and that these alterations are more marked in ewes carrying multiple fetuses.The experimental work was supported by funds from Regione Autonoma della Sardegna—Progetti ricerca fondamentale o di base—L.R. 7/2007—annualità 2013 (CRP 78167).Peer reviewe

    Homocysteinylated Albumin Promotes Increased Monocyte-Endothelial Cell Adhesion and Up-Regulation of MCP1, Hsp60 and ADAM17

    Get PDF
    RATIONALE:The cardiovascular risk factor homocysteine is mainly bound to proteins in human plasma, and it has been hypothesized that homocysteinylated proteins are important mediators of the toxic effects of hyperhomocysteinemia. It has been recently demonstrated that homocysteinylated proteins are elevated in hemodialysis patients, a high cardiovascular risk population, and that homocysteinylated albumin shows altered properties. OBJECTIVE:Aim of this work was to investigate the effects of homocysteinylated albumin - the circulating form of this amino acid, utilized at the concentration present in uremia - on monocyte adhesion to a human endothelial cell culture monolayer and the relevant molecular changes induced at both cell levels. METHODS AND RESULTS:Treated endothelial cells showed a significant increase in monocyte adhesion. Endothelial cells showed after treatment a significant, specific and time-dependent increase in ICAM1 and VCAM1. Expression profiling and real time PCR, as well as protein analysis, showed an increase in the expression of genes encoding for chemokines/cytokines regulating the adhesion process and mediators of vascular remodeling (ADAM17, MCP1, and Hsp60). The mature form of ADAM17 was also increased as well as Tnf-α released in the cell medium. At monocyte level, treatment induced up-regulation of ICAM1, MCP1 and its receptor CCR2. CONCLUSIONS:Treatment with homocysteinylated albumin specifically increases monocyte adhesion to endothelial cells through up-regulation of effectors involved in vascular remodeling

    Semen molecular and cellular features: these parameters can reliably predict subsequent ART outcome in a goat model

    Get PDF
    Currently, the assessment of sperm function in a raw or processed semen sample is not able to reliably predict sperm ability to withstand freezing and thawing procedures and in vivo fertility and/or assisted reproductive biotechnologies (ART) outcome. The aim of the present study was to investigate which parameters among a battery of analyses could predict subsequent spermatozoa in vitro fertilization ability and hence blastocyst output in a goat model. Ejaculates were obtained by artificial vagina from 3 adult goats (Capra hircus) aged 2 years (A, B and C). In order to assess the predictive value of viability, computer assisted sperm analyzer (CASA) motility parameters and ATP intracellular concentration before and after thawing and of DNA integrity after thawing on subsequent embryo output after an in vitro fertility test, a logistic regression analysis was used. Individual differences in semen parameters were evident for semen viability after thawing and DNA integrity. Results of IVF test showed that spermatozoa collected from A and B lead to higher cleavage rates (0 < 0.01) and blastocysts output (p < 0.05) compared with C. Logistic regression analysis model explained a deviance of 72% (p < 0.0001), directly related with the mean percentage of rapid spermatozoa in fresh semen (p < 0.01), semen viability after thawing (p < 0.01), and with two of the three comet parameters considered, i.e tail DNA percentage and comet length (p < 0.0001). DNA integrity alone had a high predictive value on IVF outcome with frozen/thawed semen (deviance explained: 57%). The model proposed here represents one of the many possible ways to explain differences found in embryo output following IVF with different semen donors and may represent a useful tool to select the most suitable donors for semen cryopreservation
    corecore