12,903 research outputs found
Quantum-degenerate mixture of fermionic lithium and bosonic rubidium gases
We report on the observation of sympathetic cooling of a cloud of fermionic
6-Li atoms which are thermally coupled to evaporatively cooled bosonic 87-Rb.
Using this technique we obtain a mixture of quantum-degenerate gases, where the
Rb cloud is colder than the critical temperature for Bose-Einstein condensation
and the Li cloud colder than the Fermi temperature. From measurements of the
thermalization velocity we estimate the interspecies s-wave triplet scattering
length |a_s|=20_{-6}^{+9} a_B. We found that the presence of residual rubidium
atoms in the |2,1> and the |1,-1> Zeeman substates gives rise to important
losses due to inelastic collisions.Comment: 4 pages, 3 figure
Spin dynamics and magnetic interactions of Mn dopants in the topological insulator BiTe
The magnetic and electronic properties of the magnetically doped topological
insulator BiMnTe were studied using electron spin
resonance (ESR) and measurements of static magnetization and electrical
transport. The investigated high quality single crystals of BiMnTe show a ferromagnetic phase transition for
at K. The Hall measurements reveal a p-type finite
charge-carrier density. Measurements of the temperature dependence of the ESR
signal of Mn dopants for different orientations of the external magnetic field
give evidence that the localized Mn moments interact with the mobile charge
carriers leading to a Ruderman-Kittel-Kasuya-Yosida-type ferromagnetic coupling
between the Mn spins of order 2-3 meV. Furthermore, ESR reveals a
low-dimensional character of magnetic correlations that persist far above the
ferromagnetic ordering temperature
On the Properties of Plastic Ablators in Laser-Driven Material Dynamics Experiments
Radiation hydrodynamics simulations were used to study the effect of plastic
ablators in laser-driven shock experiments. The sensitivity to composition and
equation of state was found to be 5-10% in ablation pressure. As was found for
metals, a laser pulse of constant irradiance gave a pressure history which
decreased by several percent per nanosecond. The pressure history could be made
more constant by adjusting the irradiance history. The impedance mismatch with
the sample gave an increase o(100%) in the pressure transmitted into the
sample, for a reduction of several tens of percent in the duration of the peak
load applied to the sample, and structured the release history by adding a
release step to a pressure close to the ablation pressure. Algebraic relations
were found between the laser pulse duration, the ablator thickness, and the
duration of the peak pressure applied to the sample, involving quantities
calculated from the equations of state of the ablator and sample using shock
dynamics.Comment: Typos fixe
Biosynthesis of Mitochondrial Porin and Insertion into the Outer Mitochondrial Membrane of Neuruspora crassa
Mitochondrial porin, the major protein of the outer mitochondrial membrane is synthesized by free cytoplasmic polysomes. The apparent molecular weight of the porin synthesized in homologous or heterologous cell-free systems is the same as that of the mature porin. Transfer in vitro of mitochondrial porin from the cytosolic fraction into the outer membrane of mitochondria could be demonstrated. Before membrane insertion, mitochondrial porin is highly sensitive to added proteinase; afterwards it is strongly protected. Binding of the precursor form to mitochondria occurs at 4°C and appears to precede insertion into the membrane. Unlike transfer of many precursor proteins into or across the inner mitochondrial membrane, assembly of the porin is not dependent on an electrical potential across the inner membrane
General relativistic corrections to the Sagnac effect
The difference in travel time of corotating and counter-rotating light waves
in the field of a central massive and spinning body is studied. The corrections
to the special relativistic formula are worked out in a Kerr field. Estimation
of numeric values for the Earth and satellites in orbit around it show that a
direct measurement is in the order of concrete possibilities.Comment: REVTex, accepted for publication on Phys. Rev.
On the trace identity in a model with broken symmetry
Considering the simple chiral fermion meson model when the chiral symmetry is
explicitly broken, we show the validity of a trace identity -- to all orders of
perturbation theory -- playing the role of a Callan-Symanzik equation and which
allows us to identify directly the breaking of dilatations with the trace of
the energy-momentum tensor. More precisely, by coupling the quantum field
theory considered to a classical curved space background, represented by the
non-propagating external vielbein field, we can express the conservation of the
energy-momentum tensor through the Ward identity which characterizes the
invariance of the theory under the diffeomorphisms. Our ``Callan-Symanzik
equation'' then is the anomalous Ward identity for the trace of the
energy-momentum tensor, the so-called ``trace identity''.Comment: 11 pages, Revtex file, final version to appear in Phys.Rev.
Isotope Shift Measurements of Stable and Short-Lived Lithium Isotopes for Nuclear Charge Radii Determination
Changes in the mean-square nuclear charge radii along the lithium isotopic
chain were determined using a combination of precise isotope shift measurements
and theoretical atomic structure calculations. Nuclear charge radii of light
elements are of high interest due to the appearance of the nuclear halo
phenomenon in this region of the nuclear chart. During the past years we have
developed a new laser spectroscopic approach to determine the charge radii of
lithium isotopes which combines high sensitivity, speed, and accuracy to
measure the extremely small field shift of an 8 ms lifetime isotope with
production rates on the order of only 10,000 atoms/s. The method was applied to
all bound isotopes of lithium including the two-neutron halo isotope Li-11 at
the on-line isotope separators at GSI, Darmstadt, Germany and at TRIUMF,
Vancouver, Canada. We describe the laser spectroscopic method in detail,
present updated and improved values from theory and experiment, and discuss the
results.Comment: 34 pages, 24 figures, 14 table
The iridium double perovskite Sr2YIrO6 revisited: A combined structural and specific heat study
Recently, the iridate double perovskite SrYIrO has attracted
considerable attention due to the report of unexpected magnetism in this
Ir (5d) material, in which according to the J model, a
non-magnetic ground state is expected. However, in recent works on
polycrystalline samples of the series BaSrYIrO no indication of
magnetic transitions have been found. We present a structural, magnetic and
thermodynamic characterization of SrYIrO single crystals, with emphasis
on the temperature and magnetic field dependence of the specific heat. Here, we
demonstrate the clue role of single crystal X-ray diffraction on the structural
characterization of the SrYIrO double perovskite crystals by reporting
the detection of a supercell, where ,
and are the unit cell dimensions of the reported monoclinic subcell. In
agreement with the expected non-magnetic ground state of Ir (5d) in
SrYIrO, no magnetic transition is observed down to 430~mK. Moreover,
our results suggest that the low temperature anomaly observed in the specific
heat is not related to the onset of long-range magnetic order. Instead, it is
identified as a Schottky anomaly caused by paramagnetic impurities present in
the sample, of the order of \%. These impurities lead to
non-negligible spin correlations, which nonetheless, are not associated with
long-range magnetic ordering.Comment: 20 pages, 10 figure
Renormalization of Crumpled Manifolds
We consider a model of D-dimensional tethered manifold interacting by
excluded volume in R^d with a single point. By use of intrinsic distance
geometry, we first provide a rigorous definition of the analytic continuation
of its perturbative expansion for arbitrary D, 0 < D < 2. We then construct
explicitly a renormalization operation, ensuring renormalizability to all
orders. This is the first example of mathematical construction and
renormalization for an interacting extended object with continuous internal
dimension, encompassing field theory.Comment: 10 pages (1 figure, included), harvmac, SPhT/92-15
Dectin-1 binding to annexins on apoptotic cells induces peripheral immune tolerance via NADPH oxidase-2
Summary Uptake of apoptotic cells (ACs) by dendritic cells (DCs) and induction of a tolerogenic DC phenotype is an important mechanism for establishing peripheral tolerance to self-antigens. The receptors involved and underlying signaling pathways are not fully understood. Here, we identify Dectin-1 as a crucial tolerogenic receptor binding with nanomolar affinity to the core domain of several annexins (annexin A1, A5, and A13) exposed on ACs. Annexins bind to Dectin-1 on a site distinct from the interaction site of pathogen-derived β-glucans. Subsequent tolerogenic signaling induces selective phosphorylation of spleen tyrosine kinase (SYK), causing activation of NADPH oxidase-2 and moderate production of reactive oxygen species. Thus, mice deficient for Dectin-1 develop autoimmune pathologies (autoantibodies and splenomegaly) and generate stronger immune responses (cytotoxic T cells) against ACs. Our data describe an important immunological checkpoint system and provide a link between immunosuppressive signals of ACs and maintenance of peripheral immune tolerance
- …
