142 research outputs found

    The advantage of the extremes: tree seedlings at intermediate abundance in a tropical forest have the highest richness of above-ground enemies and suffer the most damage

    Get PDF
    1. Tropical forest tree diversity has been hypothesized to be maintained via the attraction of density responsive and species-specific enemies. Tests of this hypothesis usually assume a linear relationship between enemy pressure (amount of damage and enemy richness) and seedling or tree density. However, enemy pressure is likely to change nonlinearly with local seedling abundance and community scale tree abundance if enemies are characterized by nonlinear functional responses. 2. We examined the abiotic and biotic factors associated with richness of above-ground enemies and foliar damage found in tree seedlings in a tropical forest in Puerto Rico. Rather than identify specific enemies targeting these seedlings, we used damage morphotypes, a paleo-ecological method, to derive a proxy for enemy species richness. 3. We found that the relationships between local and (conspecific seedling density) community scale (conspecific basal area of adult trees) abundance and both richness of above-ground enemies and foliar damage were hump-shaped. Seedlings of tree species existing at intermediate levels of abundance, at both local and community scales, suffered more damage and experienced pressure from a greater diversity of enemies than those existing at high or low densities. 4. We hypothesized that greater damage at intermediate abundance level could arise from a rich mixture of generalist and specialist enemies targeting seedlings of intermediate abundance tree species. Consistent with this hypothesis, we found that generalist enemies were more diverse on species at rare or intermediate abundance relative to common tree species. However, specialist enemies showed no significant trend across tree species abundance at either the local or community scales. 5. Synthesis. Our results suggest that interspecific variation in tree species abundance leads to differences in the magnitude and type of damage tropical tree seedlings suffer. This variation leads to a nonlinear, hump-shaped relationship between species abundance and enemy damage, highlighting fruitful directions for further development of species coexistence theory

    Linking spatial patterns of leaf litterfall and soil nutrients in a tropical forest: a neighborhood approach

    Get PDF
    Leaf litter represents an important link between tree community composition, forest productivity and biomass, and ecosystem processes. In forests, the spatial distribution of trees and species-specific differences in leaf litter production and quality are likely to cause spatial heterogeneity in nutrient returns to the forest floor and, therefore, in the redistribution of soil nutrients. Using mapped trees and leaf litter data for 12 tree species in a subtropical forest with a well-documented history of land use, we: (1) parameterized spatially explicit models of leaf litter biomass and nutrient deposition; (2) assessed variation in leaf litter inputs across forest areas with different land use legacies; and (3) determined the degree to which the quantity and quality of leaf litter inputs and soil physical characteristics are associated with spatial heterogeneity in soil nutrient ratios (C:N and N:P). The models captured the effects of tree size and location on spatial variation in leaf litterfall (R2 = 0.31–0.79). For all 12 focal species, most of the leaf litter fell less than 5 m away from the source trees, generating fine-scale spatial heterogeneity in leaf litter inputs. Secondary forest species, which dominate areas in earlier successional stages, had lower leaf litter C:N ratios and produced less litter biomass than old-growth specialists. In contrast, P content and N:P ratios did not vary consistently among successional groups. Interspecific variation in leaf litter quality translated into differences in the quantity and quality (C:N) of total leaf litter biomass inputs and among areas with different land use histories. Spatial variation in leaf litter C:N inputs was the major factor associated with heterogeneity in soil C:N ratios relative to soil physical characteristics. In contrast, spatial variation soil N:P was more strongly associated with spatial variation in topography than heterogeneity in leaf litter inputs. The modeling approach presented here can be used to generate prediction surfaces for leaf litter deposition and quality onto the forest floor, a useful tool for understanding soil–vegetation feedbacks. A better understanding of the role of leaf litter inputs from secondary vegetation in restoring soil nutrient stocks will also assist in managing expanding secondary forests in tropical regions

    Hurricane MarĂ­a tripled stem breaks and doubled tree mortality relative to other major storms

    Get PDF
    Tropical cyclones are expected to intensify under a warming climate, with uncertain effects on tropical forests. One key challenge to predicting how more intense storms will influence these ecosystems is to attribute impacts specifically to storm meteorology rather than differences in forest characteristics. Here we compare tree damage data collected in the same forest in Puerto Rico after Hurricanes Hugo (1989, category 3), Georges (1998, category 3), and MarĂ­a (2017, category 4). MarĂ­a killed twice as many trees as Hugo, and for all but two species, broke 2- to 12-fold more stems than the other two storms. Species with high density wood were resistant to uprooting, hurricane-induced mortality, and were protected from breakage during Hugo but not MarĂ­a. Tree inventories and a wind exposure model allow us to attribute these differences in impacts to storm meteorology. A better understanding of risk factors associated with tree species susceptibility to severe storms is key to predicting the future of forest ecosystems under climate warming

    The interaction of land-use legacies and hurricane disturbance in subtropical wet forest: twenty-one years of change

    Get PDF
    Disturbance shapes plant communities over a wide variety of spatial and temporal scales. How natural and anthropogenic disturbance interact to shape ecological communities is highly variable and begs a greater understanding. We used five censuses spanning the years 1990–2011 from the 16-ha Luquillo Forest Dynamics Plot (LFDP) in northeast Puerto Rico to investigate the interplay of human land-use legacies dating to the early 20th century and two recent hurricanes (Hugo, 1989 and Georges, 1998). The LFDP is a landscape mosaic comprised of an area of mature subtropical wet forest and three areas of secondary forest with differing past land-use intensities. We examined the degree to which hurricane disturbance–effect and subsequent community recovery varied across past land-use classes. We expected areas with greater intensity of human land use to be more affected by hurricane disturbance therefore exhibiting greater initial damage and longer successional recovery times. Structurally, areas of secondary forest contained smaller trees than old-growth areas; hurricanes caused widespread recruitment of shrubs and saplings that thinned with time since the first hurricane. Species richness of the plot declined over time, mostly due to the loss of rare species, but also due to the loss of some heliophilic, pioneer species that became abundant after the first hurricane. Species composition differed strongly between areas of secondary and mature forest, and these differences were largely constant over time, except for an increase in compositional differences following the second hurricane. An indicator species analysis attributed this pattern to the longer persistence of pioneer species in areas of greater past land-use intensity, likely due to the more open canopy in secondary forest. When secondary forest areas of differing past land-use intensity were considered separately, few species of low community rank were found as indicators. When these areas were combined, more and higher-ranked species emerged as indicators, creating ecologically meaningful indicator species combinations that better captured the broad-scale plant community response to past land use. Our findings support the idea that effects of past land use can persist for decades to centuries following land-use abandonment, illustrating the importance of land-use legacies in shaping regenerating tropical secondary forests

    Species-time-area and phylogenetic-time-area relationships in tropical tree communities

    Get PDF
    The species-area relationship (SAR) has proven to be one of the few strong generalities in ecology. The temporal analog of the SAR, the species-time relationship (STR), has received considerably less attention. Recent work primarily from the temperate zone has aimed to merge the SAR and the STR into a synthetic and unified species-time-area relationship (STAR) as originally envisioned by Preston (1960). Here we test this framework using two tropical tree communities and extend it by deriving a phylogenetic-time-area relationship (PTAR). The work finds some support for Preston's prediction that diversity-time relationships, both species and phylogenetic, are sensitive to the spatial scale of the sampling. Contrary to the Preston's predictions we find a decoupling of diversity-area and diversity-time relationships in both forests as the time period used to quantify the diversity-area relationship changes. In particular, diversity-area and diversity-time relationships are positively correlated using the initial census to quantify the diversity-area relationship, but weakly or even negatively correlated when using the most recent census. Thus, diversity-area relationships could forecast the temporal accumulation of biodiversity of the forests, but they failed to back-cast the temporal accumulation of biodiversity suggesting a decoupling of space and time

    Hurricane-induced rainfall is a stronger predictor of tropical forest damage in Puerto Rico than maximum wind speeds

    Get PDF
    Projected increases in cyclonic storm intensity under a warming climate will have profound effects on forests, potentially changing these ecosystems from carbon sinks to sources. Forecasting storm impacts on these ecosystems requires consideration of risk factors associated with storm meteorology, landscape structure, and forest attributes. Here we evaluate risk factors associated with damage severity caused by Hurricanes María and Irma across Puerto Rican forests. Using field and remote sensing data, total forest aboveground biomass (AGB) lost to the storms was estimated at 10.44 (±2.33) Tg, ca. 23% of island-wide pre-hurricane forest AGB. Storm-related rainfall was a stronger predictor of forest damage than maximum wind speeds. Soil water storage capacity was also an important risk factor, corroborating the influence of rainfall on forest damage. Expected increases of 20% in hurricane-associated rainfall in the North Atlantic highlight the need to consider how such shifts, together with high speed winds, will affect terrestrial ecosystems

    A Well-Resolved Phylogeny of the Trees of Puerto Rico Based on DNA Barcode Sequence Data

    Get PDF
    Background: The use of phylogenetic information in community ecology and conservation has grown in recent years. Two key issues for community phylogenetics studies, however, are (i) low terminal phylogenetic resolution and (ii) arbitrarilydefined species pools. Methodology/principal findings: We used three DNA barcodes (plastid DNA regions rbcL, matK, and trnH-psbA) to infer a phylogeny for 527 native and naturalized trees of Puerto Rico, representing the vast majority of the entire tree flora of the island (89%). We used a maximum likelihood (ML) approach with and without a constraint tree that enforced monophyly of recognized plant orders. Based on 50% consensus trees, the ML analyses improved phylogenetic resolution relative to a comparable phylogeny generated with PHYLOMATIC (proportion of internal nodes resolved:constrained ML = 74%, unconstrained ML = 68%, PHYLOMATIC = 52%). We quantified the phylogenetic composition of 15 protected forests in Puerto Rico using the constrained ML and PHYLOMATIC phylogenies. We found some evidence that tree communities in areas of high water stress were relatively phylogenetically clustered. Reducing the scale at which the species pool was defined (from island to soil types) changed some of our results depending on which phylogeny (ML vs. PHYLOMATIC) was used. Overall, the increased terminal resolution provided by the ML phylogeny revealed additional patterns that were not observed with a less-resolved phylogeny. Conclusions/significance: With the DNA barcode phylogeny presented here (based on an island-wide species pool), we show that a more fully resolved phylogeny increases power to detect nonrandom patterns of community composition in several Puerto Rican tree communities. Especially if combined with additional information on species functional traits and geographic distributions, this phylogeny will (i) facilitate stronger inferences about the role of historical processes in governing the assembly and composition of Puerto Rican forests, (ii) provide insight into Caribbean biogeography, and (iii) aid in incorporating evolutionary history into conservation planning

    Aboveground carbon responses to experimental and natural hurricane impacts in a subtropical wet forest in Puerto Rico

    Get PDF
    Climate change and disturbance make it difficult to project long-term patterns of carbon sequestration in tropical forests, but large ecosystem experiments in these forests can inform predictions. The Canopy Trimming Experiment (CTE) manipulates two key components of hurricane disturbance, canopy openness and detritus deposition, in a tropical forest in Puerto Rico. We documented how the CTE and a real hurricane affected tree recruitment, biomass, and aboveground carbon storage over 15 years. In the CTE treatments, we trimmed branches, but we did not fell trees. We expected that during the 14-year period after initial canopy trimming, regrowth of branches and stems and stem recruitment stimulated by increased light and trimmed debris would help restore biomass and carbon loss due to trimming. Compared to control plots, in the trimmed plots recruitment of palms and dicot trees increased markedly after trimming, and stem diameters of standing trees increased. Data showed that recruitment of small trees adds little to aboveground carbon, compared to the amount in large trees. Nevertheless, this response restored pretreatment biomass and carbon in the experimental period. In particular, the experimental additions of trimmed debris on the forest floor seemed to stimulate increase in aboveground carbon. Toward the end of the experimental period, Hurricane Maria (Category 4 hurricane) trimmed and felled some trees but reduced aboveground carbon less in the plots (including untrimmed plots) than experimental trimming had. Thus, it appears that the amount of regrowth recorded after experimental trimming could also restore aboveground carbon in the forest after a severe hurricane in the same time span. However, Hurricane Maria, unlike the trimming treatments, felled large trees, and it may be that with predicted, more frequent severe hurricanes, that the continued loss of large trees would over the long term decrease aboveground carbon stored in this Puerto Rican forest and likewise in other tropical forests affected by cyclonic storms
    • …
    corecore