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Abstract

Climate change and disturbance make it difficult to project long-term patterns

of carbon sequestration in tropical forests, but large ecosystem experiments in

these forests can inform predictions. The Canopy Trimming Experiment (CTE)

manipulates two key components of hurricane disturbance, canopy openness

and detritus deposition, in a tropical forest in Puerto Rico. We documented

how the CTE and a real hurricane affected tree recruitment, biomass, and

aboveground carbon storage over 15 years. In the CTE treatments, we trimmed

branches, but we did not fell trees. We expected that during the 14-year period

after initial canopy trimming, regrowth of branches and stems and stem

recruitment stimulated by increased light and trimmed debris would help

restore biomass and carbon loss due to trimming. Compared to control plots,

in the trimmed plots recruitment of palms and dicot trees increased markedly

after trimming, and stem diameters of standing trees increased. Data showed

that recruitment of small trees adds little to aboveground carbon, compared to

the amount in large trees. Nevertheless, this response restored pretreatment

biomass and carbon in the experimental period. In particular, the experimen-

tal additions of trimmed debris on the forest floor seemed to stimulate increase

in aboveground carbon. Toward the end of the experimental period, Hurricane

Maria (Category 4 hurricane) trimmed and felled some trees but reduced

aboveground carbon less in the plots (including untrimmed plots) than experi-

mental trimming had. Thus, it appears that the amount of regrowth recorded

after experimental trimming could also restore aboveground carbon in the for-

est after a severe hurricane in the same time span. However, Hurricane Maria,

unlike the trimming treatments, felled large trees, and it may be that with

predicted, more frequent severe hurricanes, that the continued loss of large

trees would over the long term decrease aboveground carbon stored in this

Puerto Rican forest and likewise in other tropical forests affected by cyclonic

storms.
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INTRODUCTION

Tropical forests have a strong influence on the global
carbon cycle. Tropical forests contain about 553 Pg of car-
bon, which accounts for 40% of the total carbon in the
terrestrial biosphere, with 58% in tropical forest vegeta-
tion, 41% in its soil, and 1% in its litter (Soepadmo, 1993).
Moreover, nearly 20% of the CO2 currently produced
globally by industrial emissions and land conversion is
absorbed by tropical forests (Lewis et al., 2009;
Viswanath & Sandeep, 2019). However, it is uncertain
whether tropical forests will continue to be carbon sinks
or shift to being net carbon sources (Cavaleri et al., 2015),
making understanding of their carbon flux and above-
ground storage imperative.

Major climatic events affect tropical forest carbon seques-
tration (Feeley et al., 2011; Newbery & Lingenfelter, 2004).
For instance, large cyclonic storms (hurricanes, typhoons,
and cyclones) can quickly modify the structure and dynam-
ics of an ecosystem (Lin et al., 2011; Navarro-Martínez
et al., 2012). Hurricane disturbances increase rates of mortal-
ity, recruitment, and growth of trees and, consequently, can
alter the composition, structure, biomass, and carbon storage
of forests (Harmon et al., 1991; Navarro-Martínez et al.,
2012; Zimmerman et al., 2014).

Hurricanes have two main impacts on forests.
They create forest gaps in which light reaches the
forest floor, and they drop debris that decomposes on
the forest floor. Thus, hurricanes provide light and
nutrients that can promote posthurricane plant
recruitment and growth (Ch�azdon & Fetcher, 1984).
This growth restores biomass and stores aboveground
carbon (Seedre, 2014). Estimation of aboveground
carbon is a fundamental to studies of carbon storage,
since it is a major compartment in the global carbon
balance (Seedre, 2014).

In the Luquillo Experimental Forest (LEF) of Puerto
Rico, we are conducting a large-scale field experiment, the
Canopy Trimming Experiment (CTE), in which canopy is
trimmed and resulting debris is manipulated in order to
simulate and compare the two main direct effects of
hurricanes—increased light in gaps and debris deposition
on the forest floor—on posthurricane forest regrowth
(Shiels & Gonz�alez, 2014). Because the CTE includes mea-
surements of tree density and size over 15 years, both
before and after the experimental treatments, we can use
the experiment to understand the potential effects of hurri-
cane disturbance on biomass and aboveground carbon

(Shiels et al., 2015). Moreover, Hurricane Maria in 2017
also affected the CTE experimental plots.

Therefore, we used the CTE to address the following
questions. First, did recruitment and growth, after trim-
ming in the CTE, compensate for aboveground carbon
losses due to trimming in the 15 years of the study, and
second: (1) which effect—canopy removal versus debris
deposition—had more impact on carbon storage, and
(2) how does a real hurricane affect aboveground carbon?
Our hypothesis was that regrowth would compensate for
carbon loss due to experimental trimming in the period
of the study. If this is not true, it implies that a predicted
increase in frequency of intense hurricanes (Knutson
et al., 2010) could eventually reduce aboveground carbon
over the long term in forests affected by hurricanes and
other cyclonic storms.

METHODS

Study site

The study site was in the LEF of northeastern Puerto Rico
(coterminous with El Yunque National Forest), near El
Verde Field Station (EVFS; 18�200 N, 65�490 W), a research
site of the Luquillo Long-Term Ecological Research
Program. The elevation is 340–485 m above sea level,
and the terrain is steep and rocky (24% average slope,
25% area covered by boulders; Soil Survey Staff, 1995).
Soils at EVFS are Oxisols and Ultisols (Soil Survey
Staff, 1995). The study site showed >80% forest cover
in a 1936 aerial photograph (Shiels et al., 2010).
Annual rainfall at the site averages 3500 mm (Shiels
et al., 2010). The study site is in “tabonuco forest,”
which is a subtropical wet forest in the Holdridge
System (Ewel & Whitmore, 1973). The most common
large trees at the site are Dacryodes excelsa (Burseraceae;
commonly named “tabonuco”), the palm Prestoea
acuminata var. montana (Arecaceae), Sloanea berteroana
(Elaeocarpaceae), and Manilkara bidentata (Sapotaceae)
(Shiels et al., 2015).

As of 1989, the LEF had experienced major hurri-
canes on average every 50–60 years, including Hurri-
cane Hugo in 1989 (based on records 1769–1989,
Scatena & Larsen, 1991). But by 2017, it had experi-
enced three severe hurricanes in 28 years (Hugo in
1989, category 5; Georges in 1998, category 3; and
Maria in 2017, category 4).
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Experimental design and treatments

The CTE is a 2 � 2 factorial randomized block design
established in tabonuco forest sites of similar age and
land-use history. Three blocks (A, B, and C) were
established (within approximately 50 ha). Each of the
three blocks had four 30 � 30 m treatment plots (each
0.09 ha; 12 plots in total). Plot size was chosen to reflect
the apparent patch size of impacts to forest canopies
observed in the LEF following Hurricane Hugo
(Brokaw & Grear, 1991; Zimmerman et al., 2010, 2014).
The 30 � 30 m plots within blocks were located at least
20-m distance from the edge of adjacent plots.

Each 30 � 30 m plot had a 20 � 20 m interior plot
measurement area, leaving a 5-m margin around each
plot to minimize edge effects. A 1.5-year monitoring
period began in 2003, before applying treatments. Each
of the four plots within a block was randomly assigned
one of four types of treatment: (1) Trim, debris not
removed; (2) Trim, debris removed; (3) No trim, debris
added; and (4) Control (no trim, no manipulation of
debris). Thus, each block had one of each treatment.
Arborists applied these treatments during November
2004 to June 2005 for TRIM 1.

We defined the area trimmed as the vertical projec-
tion of the boundaries of the 30 � 30 m plot. All non-
palm trees ≥15 cm diameter at 1.3 m height (dbh) inside
the 30 � 30 m area had their branches <10 cm diameter
trimmed (cutoff). For nonpalm trees between 10 and
15 cm dbh, each tree was trimmed starting at 3 m height
and continuing up the stem. For all palm trees ≥3 m
height, fronds were trimmed at the connection with the
main stem; however, the apical meristem was preserved.
Vegetation below 3 m height was not trimmed, except
that we trimmed palm fronds below 3 m. In trimmed
plots, canopy openness increased to about 16% of pretrim
openness (Shiels et al., 2010; Shiels & Gonz�alez, 2014;
Zimmerman et al., 2014).

The debris resulting from the trimming was sorted
into three types: wood (branches ≥ 1.5 cm diameter),
leaves and twigs (branches < 1.5 cm diameter and all
nonpalm foliar material), and palm fronds. To establish
wet mass, the debris was weighed immediately after trim-
ming; then, samples of debris were weighed and dried at
45�C until constant mass was achieved, to establish
wet/dry mass ratios. Then, within each block, all detritus
of each of the three types was spread evenly on Trim,
debris not removed, and No trim, debris added plots
(debris from Trim, debris not removed, plots was depos-
ited back on the plot where it originated). On average,
11,157 � 362 kg (mean � SE) of wet mass detritus
(6530 � 186 kg dry mass) was cut on each of the six
Trim plots.

We made TRIM 2 in 2014, with just one manipulative
treatment: Trim, debris not removed. Thus, in 2014, we
did not remove debris from any plots nor add debris to
any plots. The same trimming protocol was used for
Trim, debris not removed, plots in 2014 as in 2004. On
average, 9379 � 179 kg (mean � SE) of wet mass detritus
(3995 � 170 kg dry mass) was trimmed.

Plant measurements

Pretreatment measurements were taken in March 2003
and October 2004. In all manipulative and Control treat-
ments in all blocks, we measured the dbh (H = 130 cm)
of all woody plants ≥1 cm dbh, including trees, shrubs,
and lianas (hereafter termed “stems”). After TRIM 1, mea-
surements were made in September 2007, October 2008,
November 2009, February 2011, February 2012, and
February 2014. Following TRIM 2, in October 2014, mea-
surements were taken in October 2014, October 2015,
and October 2016. Measurements were also taken in
December 2017, after the passage of Hurricane Maria,
and in November 2018.

We followed the Center for Tropical Forest Science
protocol (Condit, 1998) for measuring stems. To mini-
mize sampling error between subsequent measurements,
we marked points of measurement with lumber crayons.
Vernier calipers were used to measure stems with
dbh <5 cm. Diameter tapes were used to measure stems
with diameters ≥5 cm dbh.

Aboveground carbon calculations

Our study focused on live aboveground carbon. We did
not consider belowground carbon nor litter in our analy-
sis. To measure the effect of canopy trimming on the
aboveground carbon dynamics, we estimated above-
ground biomass and converted biomass to carbon. We
used biomass equations previously used in the forests of
the LEF. We separately estimated biomass of palms and
nonpalm trees. For palms, we used: Y = ax + b, where
Y is aboveground biomass, x is height in meter, and
a and b are estimated parameters of the fitted models
(Frangi & Lugo, 1985). For nonpalm trees, we used two
equations: (1) for trees <5 cm dbh, Y = 0.3210D1.3925,
and (2) for trees >5 cm dbh, Y = 4.7306–2.8566D
+ 0.5832D2, where Y is estimated biomass and D is the
dbh in centimeter (Weaver & Gillespie, 2017). We then
multiplied the aboveground biomass by 0.47 to obtain
aboveground carbon (Macías et al., 2017). Our statistical
analyses were made in R, SigmaPlot, and Excel. We made
a general linear model to determine which hurricane
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effect—canopy removal versus debris deposition—had
more impact on carbon storage.

Preliminary analysis suggested that using dbh to esti-
mate biomass (and carbon) loss and gain in the Trim
treatments was adequate for general trends and compari-
sons but not for a detailed comparison of biomass loss
and gains due to experimental canopy trimming. This is
because trees were not felled (thus not greatly changing
biomass) in the experiment, and because using dbh does
not accurately compare the biomass of branches and
leaves that were trimmed with the biomass of branches
and leaves that regrew on the trimmed trees. Therefore,
we used the following method to estimate biomass loss
and gain of leaves and branches in Trim, debris not
removed (the only treatment for which this calculation
was possible). As described in our methods, we weighed
trimmed material to estimate biomass loss due to TRIM
1 and likewise to estimate biomass loss due to TRIM
2. Most important, we used the same guidelines (bra-
nches <10 cm diameter trimmed, etc.) to perform both
trims. So, whatever biomass of leaves and branches we
trimmed at TRIM 2 was what had regrown since TRIM
1. With this method, we can state accurately that the
weight trimmed at TRIM 1 is biomass loss in leaves and
branches, and the weight trimmed at TRIM 2 is biomass
gained in leaves and branches in the TRIM 1 to TRIM
2 period in Trim, debris not removed. We will use both
this accurate amount and the general trends shown using
dbh to evaluate the loss and potential recovery of biomass
and carbon in the experiment.

RESULTS

Our dataset contained a cumulative total of 24,678 indi-
vidual stems of 83 species in all blocks for the whole
study period. Among these 24,678 stems, 7545 were in
Trim, debris not removed; 8490 were in Trim, debris
removed; 3688 were in No trim, debris added; and 4955
were in Control.

Stem recruitment and dynamics

The total number of stems ≥1.0 cm dbh in all plots was
decreasing before any treatments (Figure 1), perhaps due
to natural thinning after previous hurricanes. But after
TRIM 1 in 2004, stem number increased, respectively, by
65% and 151% of pretrim values in Trim, debris removed
and Trim, debris not removed, where there were signifi-
cantly more stems than in No trim, debris added, and
Control (*p < 0.05). However, the increase was transi-
tory; by 2009, the number of stems in both Trim plots

had fallen (Figure 1), to reach 26% in Trim, debris
removed, and 15% Trim, debris not removed, of the peak
values of 2014. It increased again by 114% of lowest value
in Trim, debris not removed, after TRIM 2 (not applied to
Trim, debris removed) in 2016.

It was mainly the number of small stems that
increased in the Trim treatments (Figure 2). These stems
peaked in 2007–2008, then declined until increasing
again after TRIM 2 in Trim, debris not removed. There
were only slight changes in stems <10 cm dbh in No
trim, debris added, and Control, until after Hurricane
Maria, when small stems increased in all three manipula-
tive treatments and in Control (Figure 2).

Aboveground carbon dynamics

Aboveground carbon, as determined from stem dbh, was
increasing in all manipulative treatments and Control
before any treatments (Figure 3), perhaps due to recovery
after previous hurricanes. Between trims it increased in
Trim, debris not removed; No trim, debris added; and
Control; it decreased in Trim, debris removed 3 years
after TRIM 1. It increased fastest in No trim, debris
added. After Hurricane Maria, aboveground carbon
declined in all treatments and Control (Figure 3). From
2016 to 2018 (from just before to after Hurricane Maria),
aboveground carbon decreased in Trim, debris not
removed, by 4689 kg/ha, in Trim, debris removed by
4949 kg/ha, in No trim, debris added by 7800 kg/ha, and
in Control by 10,068 kg/ha.

Aboveground carbon increased significantly in No
trim, debris added (p < 0.001) during the experimental
period, 2004–2017 (general linear model, Figure 3).
Aboveground carbon also significantly increased in Trim,
debris not removed (p < 0.01), in this period. By contrast,
in Trim, debris removed, there was a significant increase
of aboveground carbon only in 2007 (p < 0.01). In the
control plot, aboveground carbon significantly increased
from 2015 to 2017 just before Hurricane Maria (p < 0.03).

The many small dbh stems recruited during the
experiment in all treatments and Control contributed lit-
tle to aboveground carbon, whereas the many fewer large
dbh stems contributed greatly and disproportionately
more (Figure 4). For instance, 17,215 trees with diame-
ters ranging from 1 to 10 cm accounted for more than
73% of all stems but contributed only 3.27% of above-
ground biomass, while 221 trees with diameters greater
or equal to 50 cm accounted for 0.94% of stems contrib-
uted to 35% of aboveground biomass.

Based on trimmed material removed, the average
aboveground carbon loss at TRIM 1 in Trim, debris not
removed was 11,157 kg, and the average loss at TRIM
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2 was 9379 kg, using the same trim protocol in both
trims. Therefore, Trim, debris not removed, had regained
9379 kg due to regrowth of branches <10 cm diameter
and leaves between 2004 and 2014. Thus, in Trim, debris
not removed, regrowth of branches and leaves in the
10-year interval between TRIM 1 and TRIM 2 had
restored 84.1% of aboveground carbon lost due to trim-
ming at TRIM 1. Hurricane Maria removed (based on
dbh) 4684, 4949, 7800, and 10,068 kg/ha of aboveground
carbon from Trim, debris not removed; Trim, debris
removed; No trim, debris added; and Control, respec-
tively. The amounts removed by Hurricane Maria for all
three treatment plots were less than that removed at
TRIM 1 in the two trim treatments.

DISCUSSION

This paper describes stem number and aboveground car-
bon dynamics through 15 years of pre- and post-
treatments designed to simulate hurricane impacts, and
it describes the effects of a true hurricane. Our results
showed an increase of more than 60% in stem density
(compared to pretrim density) 3 years after TRIM 1 in the
two Trim treatments. However, this increase was transi-
tory; after 3 years, stem density dropped, as found by
Shiels et al. (2010) and Zimmerman et al. (2014). In both
Trim treatments, recruitment of saplings after TRIM

1 (2004) seemed to end in 2007, and recruitment after the
TRIM 2 (2014) seemed to end in 2017. It appears that
canopy opening offered opportunity for seedlings and
saplings to establish. Then, as the forest canopy closed,
the light available declined rapidly at the forest floor
(Shiels et al., 2010; Shiels & Gonz�alez, 2014), and recruit-
ment diminished. In 2017, Hurricane Maria disturbed the
canopy in all plots and induced stem recruitment.

Plant recruitment following TRIM 1, TRIM 2, and
after Hurricane Maria had little effect on the dynamics of
aboveground carbon, because recruited stems were small
and mostly short-lived. Similarly, in the study by Mascaro
et al. (2005) where aboveground biomass was measured
after a hurricane in Nicaragua, trees ranging from 3.2 to
10 cm in dbh made up more than 89% of all stems
but accounted for only 2.5% of aboveground biomass,
while seven trees >70 cm dbh made up 1.4% of stems
but accounted for 45% of aboveground biomass. Other
studies in Nepal (Gautam & Mandal, 2016), in Ethiopia
(Yohannes & Soromessa, 2015), and in Tanzania
(Mwakisunga & Majule, 2012) all report that large diame-
ter trees account for the bulk of aboveground carbon in
forests (Lutz et al., 2018).

In No trim, debris added, aboveground carbon
increased by 4% in 2007 and 9% in 2014, while in Trim,
debris removed, there was a 2% increase by 2007, then a
decrease of 5% in 2014, before the second trim, based on
dbh measurements. Thus, adding debris seems to have

F I GURE 1 Stem (≥1 cm dbh) recruitment dynamics over time. The three vertical bars indicate the dates of TRIM 1, TRIM 2, and

Hurricane Maria. The error bars are SDs. The two error bars in 2014 indicate the two censuses for that year (February and October,

respectively). The number of stems is the mean and SD among three replicates of each treatment. TRIM 2 was performed only for Trim,

debris not removed
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increased aboveground biomass after 3 years or more
after such hurricane debris deposition. In earlier ana-
lyses, debris added to No trim, debris added, appeared to
increase basal area increment (Shiels et al., 2010). This
increase was attributed to a fertilization effect, the benefits
of increased soil moisture, or other unmeasured effects of

decomposing debris on tree growth (Zimmerman et al.,
2014). Consequently, CTE results suggest that adding
debris as a hurricane effect had a greater effect on
aboveground carbon than did canopy trimming and conse-
quent increased light. Debris deposition also influences
belowground carbon. In a previous study in the CTE,

F I GURE 2 Diameter-class distributions of stems ≥1 cm dbh at each census date (2014a and 2014b) indicate the two censuses in 2014.

TRIM 2 was performed only for Trim, debris not removed
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Gutiérrez del Arroyo and Silver (2018) found that below-
ground carbon significantly increased in No trim, debris
added. They also argued that canopy opening as a treat-
ment alone did not significantly affect carbon.

Over the first 14 years of the experiment (2003–2017),
before Hurricane Maria, net aboveground carbon (based
on dbh measurements) increased in all treatments
including the control, except in Trim, debris removed.
And, based only on branches and leaves trimmed and
regrown, it had increased to 84.1% of pretrim above-
ground carbon in Trim, debris not removed, between

TRIM 1 and TRIM 2. Together, with less accurately mea-
sured but evident increases due to diameter increment, it
appears that the trim treatments recovered enough bio-
mass and aboveground carbon to compensate for losses
due to trimming. Thus, results from the CTE tend to con-
firm our hypothesis that during the period after experi-
mental canopy trimming (but no tree felling), regrowth
of branches and leaves and stem growth would restore
biomass and aboveground carbon loss. Moreover, Hurri-
cane Maria both trimmed and felled trees, and reduced
aboveground carbon less than experimental trimming had.
Thus, it appears that the amount of regrowth recorded
after experimental trimming would also restore above-
ground carbon in the forest after a severe hurricane, in the
same time span as that of the experiment. Our results also
suggest that increased debris and its presumed fertilization
effect could add resilience.

However, Hurricane Maria, unlike the trimming
treatments, felled trees. Hurricanes affect large trees
more than small trees (Brokaw & Everham, 1996), and
Caribbean hurricanes are projected to be more intense
due to atmospheric warming (Knutson et al., 2010).
Over the long term and through a regime of more
strong hurricanes, a continued loss of large trees that
take years to replace could eventually result in less
aboveground carbon stored in this Puerto Rican forest
and likewise in other tropical forests affected by
cyclonic storms.

F I GURE 3 Aboveground carbon changes over time. The three vertical bars indicate the dates of TRIM 1, TRIM 2, and Hurricane

Maria. The two error bars in 2014 indicate the two censuses for that year (February and October, respectively). The aboveground carbon is

the mean and SD among three replicates of each treatment. TRIM 2 was performed only for Trim, debris not removed

F I GURE 4 Relationship between stem size and aboveground

biomass in Control (no manipulation) in 2003. The error bars

are SDs
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