158 research outputs found

    Microscopic description of anisotropic low-density dipolar Bose gases in two dimensions

    Get PDF
    A microscopic description of the zero energy two-body ground state and many-body static properties of anisotropic homogeneous gases of bosonic dipoles in two dimensions at low densities is presented and discussed. By changing the polarization angle with respect to the plane, we study the impact of the anisotropy, present in the dipole--dipole interaction, on the energy per particle, comparing the results with mean field predictions. We restrict the analysis to the regime where the interaction is always repulsive, although the strength of the repulsion depends on the orientation with respect to the polarization field. We present a series expansion of the solution of the zero energy two-body problem which allows us to find the scattering length of the interaction and to build a suitable Jastrow factor that we use as a trial wave function for both a variational and diffusion Monte Carlo simulation of the infinite system. We find that the anisotropy has an almost negligible impact on the ground state properties of the many-body system in the universal regime where the scattering length governs the physics of the system. We also show that scaling in the gas parameter persists in the dipolar case up to values where other isotropic interactions with the same scattering length yield different predictions.Comment: 9 figures, 1 tabl

    Reducing prescribing errors through creatinine clearance alert redesign

    Get PDF
    Background Literature has shown that computerized creatinine clearance alerts reduce errors during prescribing, and applying human factors principles may further reduce errors. Our objective was to apply human factors principles to creatinine clearance alert design and assess whether the redesigned alerts increase usability and reduce prescribing errors compared with the original alerts. Methods Twenty Veterans Affairs (VA) outpatient providers (14 physicians, 2 nurse practitioners, and 4 clinical pharmacists) completed 2 usability sessions in a counterbalanced study to evaluate original and redesigned alerts. Each session consisted of fictional patient scenarios with 3 medications that warranted prescribing changes because of renal impairment, each associated with creatinine clearance alerts. Quantitative and qualitative data were collected to assess alert usability and the occurrence of prescribing errors. Results There were 43% fewer prescribing errors with the redesigned alerts compared with the original alerts (P = .001). Compared with the original alerts, redesigned alerts significantly reduced prescribing errors for allopurinol and ibuprofen (85% vs 40% and 65% vs 25%, P = .012 and P = .008, respectively), but not for spironolactone (85% vs 65%). Nine providers (45%) voiced confusion about why the alert was appearing when they encountered the original alert design. When laboratory links were presented on the redesigned alert, laboratory information was accessed 3.5 times more frequently. Conclusions Although prescribing errors were high with both alert designs, the redesigned alerts significantly improved prescribing outcomes. This investigation provides some of the first evidence on how alerts may be designed to support safer prescribing for patients with renal impairment

    Utilizing a user-centered approach to develop and assess pharmacogenomic clinical decision support for thiopurine methyltransferase

    Get PDF
    BACKGROUND: A pharmacogenomic clinical decision support tool (PGx-CDS) for thiopurine medications can help physicians incorporate pharmacogenomic results into prescribing decisions by providing up-to-date, real-time decision support. However, the PGx-CDS user interface may introduce errors and promote alert fatigue. The objective of this study was to develop and evaluate a prototype of a PGx-CDS user interface for thiopurine medications with user-centered design methods. METHODS: This study had two phases: In phase I, we conducted qualitative interviews to assess providers' information needs. Interview transcripts were analyzed through a combination of inductive and deductive qualitative analysis to develop design requirements for a PGx-CDS user interface. Using these requirements, we developed a user interface prototype and evaluated its usability (phase II). RESULTS: In total, 14 providers participated: 10 were interviewed in phase I, and seven providers completed usability testing in phase II (3 providers participated in both phases). Most (90%) participants were interested in PGx-CDS systems to help improve medication efficacy and patient safety. Interviews yielded 11 themes sorted into two main categories: 1) health care providers' views on PGx-CDS and 2) important design features for PGx-CDS. We organized these findings into guidance for PGx-CDS content and display. Usability testing of the PGx-CDS prototype showed high provider satisfaction. CONCLUSION: This is one of the first studies to utilize a user-centered design approach to develop and assess a PGx-CDS interface prototype for Thiopurine Methyltransferase (TPMT). This study provides guidance for the development of a PGx-CDS, and particularly for biomarkers such as TPMT

    Hypertension treatment intensification among stroke survivors with uncontrolled blood pressure

    Get PDF
    Objective The study objective was to evaluate a pharmacist hypertension care management program within the patient-centered medical home. Methods This was a retrospective case-control study. Cases included all patients with hypertension who were referred to the care management program, and controls included patients with hypertension who were not referred to the program during the same 1-year period. Each case was matched to a maximum of 3 controls on the basis of primary care physician, age ±5 years, gender, diagnoses of diabetes and kidney disease, baseline systolic blood pressure ±10 mm Hg, and number of unique antihypertensive medications. Pharmacists provided a hypertension care management program under an approved scope of practice that allowed pharmacists to meet individually with patients, adjust medications, and provide patient education. Primary outcomes were systolic blood pressure and diastolic blood pressure at 6 and 12 months. Multivariate regression models compared each blood pressure end point between cases and controls adjusting for age, comorbidities, baseline blood pressure, and baseline number of blood pressure medications. Results A total of 573 patients were referred to the hypertension program; 86% (465/543) had at least 1 matched control and were included as cases in the analyses; 3:1 matching was achieved in 90% (418/465) of cases. At baseline, cases and controls did not differ with respect to age, gender, race, or comorbidity; baseline blood pressure was higher (139.9/80.0 mm Hg vs 136.7/78.2 mm Hg, P ≤ .0002) in the cases compared with controls. Multivariate regression modeling identified significantly lower systolic blood pressure for the cases compared with controls at both 6 and 12 months (6-month risk ratio [RR], 9.7; 95% confidence interval [CI], 2.7-35.3; 12-month RR, 20.3; 95% CI, 4.1-99.2; P < .01 for both comparisons). Diastolic blood pressure was significantly lower at 12 months (RR, 2.9; 95% CI, 1.2-7.1; P < .01) but not at 6 months (RR, 1.0; 95% CI, 0.31-3.4; P = .9) for the cases compared with controls. Conclusions Patients who were referred to the pharmacist hypertension care management program had a significant improvement in most blood pressure outcomes. This program may be an effective method of improving blood pressure control among patients in a medical home model of primary care

    Concentration Dependence of the Effective Mass of He-3 Atoms in He-3/He-4 Mixtures

    Full text link
    Recent measurements by Yorozu et al. (S. Yorozu, H. Fukuyama, and H. Ishimoto, Phys. Rev. B 48, 9660 (1993)) as well as by Simons and Mueller (R. Simons and R. M. Mueller, Czhechoslowak Journal of Physics Suppl. 46, 201 (1976)) have determined the effective mass of He-3 atoms in a He-3/He-4 mixture with great accuracy. We here report theoretical calculations for the dependence of that effective mass on the He-3 concentration. Using correlated basis functions perturbation theory to infinite order to compute effective interactions in the appropriate channels, we obtain good agreement between theory and experiment.Comment: 4 pages, 1 figur

    Association of Locomotor Activity During Sleep Deprivation Treatment With Response

    Get PDF
    Disrupted circadian rhythms and sleep patterns are frequently observed features of psychiatric disorders, and especially mood disorders. Sleep deprivation treatment (SD) exerts rapid but transient antidepressant effects in depressed patients and has gained recognition as a model to study quick-acting antidepressant effects. It is of interest how locomotor activity patterns during SD might be associated with and potentially predict treatment response. The present study is an analysis of locomotor activity data, previously collected over a 24 h period, to examine the night of SD (Trautmann et al. 2018) as mood disorder patients suffering from a depressive episode (n = 78; after exclusions n = 59) underwent SD. In this exploratory analysis, the associations between response to SD, locomotor activity, and subjective mood during the 24 h period of SD were explored. Higher levels of activity overall were observed in non-responders (n = 18); in particular, non-responders moved more during the evening of SD until midnight and remained high thereafter. In contrast, activity in responders (n = 41) decreased during the evening and increased in the morning. Subjective mood was not found to be associated with locomotor activity. The window of data available in this analysis being limited, additional data from before and after the intervention are required to fully characterize the results observed. The present results hint at the possible utility of locomotor activity as a predictor and early indicator of treatment response, and suggest that the relationship between SD and locomotor activity patterns should be further investigated

    Applying human factors principles to alert design increases efficiency and reduces prescribing errors in a scenario-based simulation

    Get PDF
    OBJECTIVE: To apply human factors engineering principles to improve alert interface design. We hypothesized that incorporating human factors principles into alerts would improve usability, reduce workload for prescribers, and reduce prescribing errors. MATERIALS AND METHODS: We performed a scenario-based simulation study using a counterbalanced, crossover design with 20 Veterans Affairs prescribers to compare original versus redesigned alerts. We redesigned drug-allergy, drug-drug interaction, and drug-disease alerts based upon human factors principles. We assessed usability (learnability of redesign, efficiency, satisfaction, and usability errors), perceived workload, and prescribing errors. RESULTS: Although prescribers received no training on the design changes, prescribers were able to resolve redesigned alerts more efficiently (median (IQR): 56 (47) s) compared to the original alerts (85 (71) s; p=0.015). In addition, prescribers rated redesigned alerts significantly higher than original alerts across several dimensions of satisfaction. Redesigned alerts led to a modest but significant reduction in workload (p=0.042) and significantly reduced the number of prescribing errors per prescriber (median (range): 2 (1-5) compared to original alerts: 4 (1-7); p=0.024). DISCUSSION: Aspects of the redesigned alerts that likely contributed to better prescribing include design modifications that reduced usability-related errors, providing clinical data closer to the point of decision, and displaying alert text in a tabular format. Displaying alert text in a tabular format may help prescribers extract information quickly and thereby increase responsiveness to alerts. CONCLUSIONS: This simulation study provides evidence that applying human factors design principles to medication alerts can improve usability and prescribing outcomes

    Single Particle and Fermi Liquid Properties of He-3/--He-4 Mixtures: A Microscopic Analysis

    Full text link
    We calculate microscopically the properties of the dilute He-3 component in a He-3/--He-4 mixture. These depend on both, the dominant interaction between the impurity atom and the background, and the Fermi liquid contribution due to the interaction between the constituents of the He-3 component. We first calculate the dynamic structure function of a He-3 impurity atom moving in He-3. From that we obtain the excitation spectrum and the momentum dependent effective mass. The pole strength of this excitation mode is strongly reduced from the free particle value in agreement with experiments; part of the strength is distributed over high frequency excitations. Above k > 1.7AËš\AA^{-1}$ the motion of the impurity is damped due to the decay into a roton and a low energy impurity mode. Next we determine the Fermi--Liquid interaction between He-4 atoms and calculate the pressure-- and concentration dependence of the effective mass, magnetic susceptibility, and the He-3--He-3 scattering phase shifts. The calculations are based on a dynamic theory that uses, as input, effective interactions provided by the Fermi hypernetted--chain theory. The relationship between both theories is discussed. Our theoretical effective masses agree well with recent measurements by Yorozu et al. (Phys. Rev. B 48, 9660 (1993)) as well as those by R. Simons and R. M. Mueller (Czekoslowak Journal of Physics Suppl. 46, 201 (1996)), but our analysis suggests a new extrapolation to the zero-concentration limit. With that effective mass we also find a good agreement with the measured Landau parameter F_0^a.Comment: 47 pages, 15 figure

    The STRANDS project: long-term autonomy in everyday environments

    Get PDF
    Thanks to the efforts of the robotics and autonomous systems community, the myriad applications and capacities of robots are ever increasing. There is increasing demand from end users for autonomous service robots that can operate in real environments for extended periods. In the Spatiotemporal Representations and Activities for Cognitive Control in Long-Term Scenarios (STRANDS) project (http://strandsproject.eu), we are tackling this demand head-on by integrating state-of-the-art artificial intelligence and robotics research into mobile service robots and deploying these systems for long-term installations in security and care environments. Our robots have been operational for a combined duration of 104 days over four deployments, autonomously performing end-user-defined tasks and traversing 116 km in the process. In this article, we describe the approach we used to enable long-term autonomous operation in everyday environments and how our robots are able to use their long run times to improve their own performance
    • …
    corecore