41 research outputs found

    Application of the Waste Resources Allocation Program (WRAP) in the Sedgwick-Reno-Harvey county region

    Get PDF
    LD2668 .R4 PLAN 1987 Z54Master of Regional and Community PlanningLandscape Architecture/Regional and Community Plannin

    Raman gain from waveguides inscribed in KGd(WOâ‚„)â‚‚ by high repetition rate femtosecond laser

    No full text
    We report the formation of waveguides in Raman-active KGd(WOâ‚„)â‚‚ with a focused, high repetition rate femtosecond laser. Parallel guiding regions, formed to either side of the laser-induced damage track, supported TE and TM modes that coupled efficiently to optical fiber at telecom wavelengths. Micro-Raman spectroscopy of the guiding regions revealed the preservation of the characteristic 768 and 901cmÂŻÂą Raman mode intensities. Raman gain with 6% efficiency was demonstrated for the 768cmÂŻÂą Raman line by pumping the waveguide with an infrared 80ps source, the first time Raman gain has been reported in laser formed waveguides

    Label swapper device for spectral amplitude coded optical packet networks monolithically integrated on InP

    Get PDF
    This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.19.013540. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under lawIn this paper the design, fabrication and experimental characterization of an spectral amplitude coded (SAC) optical label swapper monolithically integrated on Indium Phosphide (InP) is presented. The device has a footprint of 4.8x1.5 mm 2 and is able to perform label swapping operations required in SAC at a speed of 155 Mbps. The device was manufactured in InP using a multiple purpose generic integration scheme. Compared to previous SAC label swapper demonstrations, using discrete component assembly, this label swapper chip operates two order of magnitudes faster. © 2011 Optical Society of America.The activities have been carried out in the framework of the Joint Research Activity (JRA) 'Active-phased Arrayed Devices' (WP 44) of the European Commission FP6 Network of Excellence ePIXnet (European Network of Excellence on Photonic Integrated Components and Circuits), Project Reference: 004525, http://www.epixnet.org/. This work has been partially funded through the Spanish Plan Nacional de I+D+i 2008-2011 project TEC2008-06145/TEC. It has also been partially supported by the Canadian Institute for Photonic Innovations. Devices are presently being fabricated through the InP Photonic Integration Platform JePPIX (coordinator D J Robbins), at the COBRA fab, http://www.jeppix.eu/Muñoz Muñoz, P.; Garcia-Olcina, R.; Habib, C.; Chen, LR.; Leijtens, XJM.; De Vries, T.; Robbins, D.... (2011). Label swapper device for spectral amplitude coded optical packet networks monolithically integrated on InP. Optics Express. 19(14):13540-13550. https://doi.org/10.1364/OE.19.013540S13540135501914Yoo, S. J. B. (2006). Optical Packet and Burst Switching Technologies for the Future Photonic Internet. Journal of Lightwave Technology, 24(12), 4468-4492. doi:10.1109/jlt.2006.886060Blumenthal, D. J., Olsson, B.-E., Rossi, G., Dimmick, T. E., Rau, L., Masanovic, M., … Barton, J. (2000). All-optical label swapping networks and technologies. Journal of Lightwave Technology, 18(12), 2058-2075. doi:10.1109/50.908817Srivatsa, A., d. Waardt, H., Hill, M. T., Khoe, G. D., & Dorren, H. J. S. (2001). All-optical serial header processing based on two-pulse correlation. Electronics Letters, 37(4), 234. doi:10.1049/el:20010178Gordon, R. E., & Chen, L. R. (2006). Demonstration of all-photonic spectral label-switching for optical MPLS networks. IEEE Photonics Technology Letters, 18(4), 586-588. doi:10.1109/lpt.2006.870188Habib, C., Baby, V., Chen, L. R., Delisle-Simard, A., & LaRochelle, S. (2008). All-Optical Swapping of Spectral Amplitude Code Labels Using Nonlinear Media and Semiconductor Fiber Ring Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 14(3), 879-888. doi:10.1109/jstqe.2008.918047Cole, C., Huebner, B., & Johnson, J. (2009). Photonic integration for high-volume, low-cost applications. IEEE Communications Magazine, 47(3), S16-S22. doi:10.1109/mcom.2009.4804385Calabretta, N., Jung, H.-D., Llorente, J. H., Tangdiongga, E., Koonen, T. A. M. J., & Dorren, H. J. S. (2009). All-Optical Label Swapping of Scalable In-Band Address Labels and 160-Gb/s Data Packets. Journal of Lightwave Technology, 27(3), 214-223. doi:10.1109/jlt.2008.2009319Smit, M. K., & Van Dam, C. (1996). PHASAR-based WDM-devices: Principles, design and applications. IEEE Journal of Selected Topics in Quantum Electronics, 2(2), 236-250. doi:10.1109/2944.577370Eisenstein, G. (1989). Semiconductor optical amplifiers. IEEE Circuits and Devices Magazine, 5(4), 25-30. doi:10.1109/101.29899Munoz, P., Pastor, D., & Capmany, J. (2002). Modeling and design of arrayed waveguide gratings. Journal of Lightwave Technology, 20(4), 661-674. doi:10.1109/50.996587Soldano, L. B., & Pennings, E. C. M. (1995). Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 13(4), 615-627. doi:10.1109/50.372474Zilkie, A. J., Meier, J., Mojahedi, M., Poole, P. J., Barrios, P., Poitras, D., … Aitchison, J. S. (2007). Carrier Dynamics of Quantum-Dot, Quantum-Dash, and Quantum-Well Semiconductor Optical Amplifiers Operating at 1.55 μm\mu{\hbox {m}}. IEEE Journal of Quantum Electronics, 43(11), 982-991. doi:10.1109/jqe.2007.90447

    Thermally stable hybrid cavity laser based on silicon nitride gratings

    Get PDF
    Funding: Science Foundation Ireland (SFI) (16/ERCS/3838, SFI12/RC/2276); Engineering and Physical Sciences Research Council (EPSRC) (EP/L017008/1, EP/L505079/1); H2020 LEIT Information and Communication Technologies (ICT) (COSMICC nr. 688516, H2020-ICT27-2015); H2020 European Research Council (ERC) (337508)In this paper, we show the experimental results of a thermally stable Si3N4 external cavity (SiN EC) laser with high power output and the lowest SiN EC laser threshold to our knowledge. The device consists of a 250 μm sized reflective semiconductor optical amplifier butt-coupled to a passive chip based on a series of Si3N4 Bragg gratings acting as narrow reflectors. A threshold of 12 mA has been achieved, with a typical side-mode suppression ratio of 45 dB and measured power output higher than 3 mW. Furthermore, we achieved a mode-hop free-lasing regime in the range of 15–62 mA and wavelength thermal stability up to 80°C. This solves the challenges related to cavity resonances’ thermal shift and shows the possibility for this device to be integrated in dense wavelength-division multiplexing (WDM) and heat-intensive optical interconnects technologies.PostprintPeer reviewe

    Terahertz radiation shaping based on optical spectrum modulation in the time domain

    Full text link
    This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.20.023117. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under lawA terahertz shaping system based on optical fiber components as opposed to traditional free-space solutions is proposed. It is based on the time-domain modulation of the optical source spectrum. Standard singlemode fiber distributes and disperses the pulse before filtering its spectral components by means of the cross-gain and cross-phase modulation effects taking place in an interferometric semiconductor optical amplifier structure. Experimental measurements are obtained, showing the tunability of the system as well as its reconfigurability. © 2012 Optical Society of America.This work has been partially supported by the Spanish Ministerio de Economia y Competitividad (TEC2009-08078). Jesus Palaci is supported by the Formacion de Personal Investigador grant program of the Universidad Politecnica de Valencia.Palací López, J.; Bockelt, AS.; Vidal Rodriguez, B. (2012). Terahertz radiation shaping based on optical spectrum modulation in the time domain. Optics Express. 20(21):23117-23125. https://doi.org/10.1364/OE.20.023117S2311723125202

    Multi-micron silicon photonicsplatform for highly manufacturable and versatile photonic integrated circuits

    Get PDF
    We describe and characterize a multi-micron silicon photonics platform that was designed to combine performance, power efficiency, manufacturability, and versatility for integrated photonic applications ranging from data communications to sensors. We outline the attributes needed for broad applicability, high-volume manufacturing, and large-scale deployment of silicon photonics, and describe how the platform is favorable with respect to these attributes. We present demonstrations of key technologies needed for the communications and sensing applications, including low-loss fiber attach, compact low-loss filters, efficient hybrid wavelength division multiplexed lasers, and high-speed electro-absorption modulators and integrated photodetectors

    High-speed Properties of 1.55-micron-wavelength Quantum Dot Semiconductor Amplifiers and Comparison with Higher-Dimensional Structures

    No full text
    This thesis reports an experimental characterization of the ultrafast gain and refractive index dynamics of a novel InAs/InGaAsP/InP quantum-dot (QD) semiconductor optical amplifier (SOA) operating near 1.55-µm wavelengths, assessing its high-speed performance characteristics for the first time. The thesis also studies the influence of the degree of quantum confinement on the dynamics of SOAs by comparing the zero-dimensional (0-D) QD's dynamics to those in 1-D InAs/InAlGaAs/InP quantum-dash (QDash), and 2-D InGaAsP/InGaAsP/InP quantum-well (QW) SOAs, both of which also operate near 1.55-µm wavelengths, and are made with matching or similar materials and structures. The ultrafast (around 1 ps) and long-lived (up to 2 ns) amplitude and phase dynamics of the SOAs are characterized via advanced heterodyne pump-probe measurements with 150-femtosecond resolution. It is found that the QD SOA has an 80-picosecond amplitude, and 110-picosecond phase recovery lifetime in the gain regime, 4-6 times faster than the QDash and QW recovery lifetimes, as well as reduced ultrafast transients, giving it the best properties for high-speed (> 100 Gb/s) all-optical signal processing in the important telecommunications wavelength bands. An impulse response model is developed and used to analyze the dynamics, facilitating a comparison of the gain compression factors, time-resolved linewidth enhancement factors (alpha-factors), and instantaneous dynamic coefficients (two-photon absorption and nonlinear refractive-index coefficients) amongst the three structures. The quantum-dot device is found to have the lowest effective alpha-factor, 2-10, compared to 8-16 in the QW, as well as time-resolved alpha-factors lower than in the QW—promising for reduced-phase-transient operation at high bitrates. Significant differences in the alpha-factors of lasers with the same structure are found, due to the differences between gain changes that are induced optically or through the electrical bias. The relative contributions of stimulated transitions and free-carrier absorption to the total carrier heating dynamics in SOAs of varying dimensionality are also reported for the first time. Examining the QD electroluminescence and linear gain spectra in combination with the carrier dynamics also brings about conclusions on the nature of the quantum confinement, dot energy-level structure, and density of states—aspects of the material that have not been previously well understood.Ph
    corecore