146 research outputs found

    A Proposal of Standardised Data Model for Cloud Manufacturing Collaborative Networks

    Full text link
    [EN] The growing amount of data to be handled by collaborative networks raises the need of introducing innovative solutions to fulfil the lack of affordable tools, especially for Small and Medium-Sized Enterprises, to manage and exchange data. The European H2020 Project Cloud Collaborative Manufacturing Networks develops and offers a structured data model, called Standardised Tables, as an organised framework to jointly work with existing databases to manage big data collected from different industries belonging to the CNs. The information of the Standardised Tables will be mainly used with optimisation and collaboration purposes. The paper describes an application of the Standardised Tables in one of the pilots of the aforementioned project, the automotive industry pilot, for solving the collaborative problem of a Materials Requirement Plan.The research leading to these results is in the frame of the “Cloud Collaborative Manufacturing Networks” (C2NET) project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 636909.Andres, B.; Sanchis, R.; Poler, R.; Saari, L. (2017). A Proposal of Standardised Data Model for Cloud Manufacturing Collaborative Networks. IFIP Advances in Information and Communication Technology. 560:77-85. https://doi.org/10.1007/978-3-319-65151-4_7S7785560Andres, B., Poler, R.: Models, guidelines and tools for the integration of collaborative processes in non-hierarchical manufacturing networks: a review. Int. J. Comput. Integr. Manuf. 2(29), 166–201 (2016)Zikopoulos, P., Eaton, C.: Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data. McGraw-Hill Osborne Media, New York (2011)Zhou, B., Wang, S., Xi, L.: Data model design for manufacturing execution system. J. Manuf. Technol. Manag. 16(8), 909–935 (2005)Steven, W.: Getting the MES model – methods for system analysis. ISA Trans. 35(2), 95–103 (1996)Reda, A.: Extracting the extended entity-relationship model from a legacy relational database. Inf. Syst. 28(6), 597–618 (2003)Teorey, T.J., Yang, D., Fry, J.P.: A logical design methodology for relational database using the extended entity-relationship model. ACM Comput. Surv. 18(2), 197–222 (1986)Victor, M., Arie, S.: Representing extended entity-relationship structures in relational databases: a modular approach. ACM Trans. Database Syst. 17(3), 423–464 (1992)CORDIS Europa, Factories of the Future, H2020-EU.2.1.5.1. - Technologies for Factories of the Future (2014)H2020 Project C2NET (2015). http://cordis.europa.eu/project/rcn/193440_en.htmlAndres, B., Sanchis, R., Poler, R.: A cloud platform to support collaboration in supply networks. Int. J. Prod. Manag. Eng. 4(1), 5–13 (2016)APICS, “SCOR Framework,” Supply Chain Operations Reference model (SCOR) (2017)Orbegozo, A., Andres, B., Mula, J., Lauras, M., Monteiro, C., Malheiro, M.: An overview of optimization models for integrated replenishment and producction planning decisions. In: Building Bridges Between Researchers and Practitioners. Book of Abstracts of the International Joint Conference CIO-ICIEOM-IISE-AIM (IJC2016), p. 68 (2016)Andres, B., Poler, R., Saari, L., Arana, J., Benaches, J.V., Salazar, J.: Optimization models to support decision-making in collaborative networks: a review. In: Building Bridges Between Researchers and Practitioners. Book of Abstracts of the International Joint Conference CIO-ICIEOM-IISE-AIM (IJC2016), p. 70 (2016)Andres, B., Sanchis, R., Lamothe, J., Saari, L., Hauser, F.: Combined models for production and distribution planning in a supply chain. In: Building Bridges Between Researchers and Practitioners. Book of Abstracts of the International Joint Conference CIO-ICIEOM-IISE-AIM (IJC2016), p. 71 (2016

    Does \u2018bigger\u2019mean \u2018better\u2019? Pitfalls and shortcuts associated with big data for social research

    Get PDF
    \u2018Big data is here to stay.\u2019 This key statement has a double value: is an assumption as well as the reason why a theoretical reflection is needed. Furthermore, Big data is something that is gaining visibility and success in social sciences even, overcoming the division between humanities and computer sciences. In this contribution some considerations on the presence and the certain persistence of Big data as a socio-technical assemblage will be outlined. Therefore, the intriguing opportunities for social research linked to such interaction between practices and technological development will be developed. However, despite a promissory rhetoric, fostered by several scholars since the birth of Big data as a labelled concept, some risks are just around the corner. The claims for the methodological power of bigger and bigger datasets, as well as increasing speed in analysis and data collection, are creating a real hype in social research. Peculiar attention is needed in order to avoid some pitfalls. These risks will be analysed for what concerns the validity of the research results \u2018obtained through Big data. After a pars distruens, this contribution will conclude with a pars construens; assuming the previous critiques, a mixed methods research design approach will be described as a general proposal with the objective of stimulating a debate on the integration of Big data in complex research projecting

    Parallel Driving and Modulatory Pathways Link the Prefrontal Cortex and Thalamus

    Get PDF
    Pathways linking the thalamus and cortex mediate our daily shifts from states of attention to quiet rest, or sleep, yet little is known about their architecture in high-order neural systems associated with cognition, emotion and action. We provide novel evidence for neurochemical and synaptic specificity of two complementary circuits linking one such system, the prefrontal cortex with the ventral anterior thalamic nucleus in primates. One circuit originated from the neurochemical group of parvalbumin-positive thalamic neurons and projected focally through large terminals to the middle cortical layers, resembling ‘drivers’ in sensory pathways. Parvalbumin thalamic neurons, in turn, were innervated by small ‘modulatory’ type cortical terminals, forming asymmetric (presumed excitatory) synapses at thalamic sites enriched with the specialized metabotropic glutamate receptors. A second circuit had a complementary organization: it originated from the neurochemical group of calbindin-positive thalamic neurons and terminated through small ‘modulatory’ terminals over long distances in the superficial prefrontal layers. Calbindin thalamic neurons, in turn, were innervated by prefrontal axons through small and large terminals that formed asymmetric synapses preferentially at sites with ionotropic glutamate receptors, consistent with a driving pathway. The largely parallel thalamo-cortical pathways terminated among distinct and laminar-specific neurochemical classes of inhibitory neurons that differ markedly in inhibitory control. The balance of activation of these parallel circuits that link a high-order association cortex with the thalamus may allow shifts to different states of consciousness, in processes that are disrupted in psychiatric diseases

    Divergent Cortical Generators of MEG and EEG during Human Sleep Spindles Suggested by Distributed Source Modeling

    Get PDF
    Background: Sleep spindles are,1-second bursts of 10–15 Hz activity, occurring during normal stage 2 sleep. In animals, sleep spindles can be synchronous across multiple cortical and thalamic locations, suggesting a distributed stable phaselocked generating system. The high synchrony of spindles across scalp EEG sites suggests that this may also be true in humans. However, prior MEG studies suggest multiple and varying generators. Methodology/Principal Findings: We recorded 306 channels of MEG simultaneously with 60 channels of EEG during naturally occurring spindles of stage 2 sleep in 7 healthy subjects. High-resolution structural MRI was obtained in each subject, to define the shells for a boundary element forward solution and to reconstruct the cortex providing the solution space for a noise-normalized minimum norm source estimation procedure. Integrated across the entire duration of all spindles, sources estimated from EEG and MEG are similar, diffuse and widespread, including all lobes from both hemispheres. However, the locations, phase and amplitude of sources simultaneously estimated from MEG versus EEG are highly distinct during the same spindles. Specifically, the sources estimated from EEG are highly synchronous across the cortex, whereas those from MEG rapidly shift in phase, hemisphere, and the location within the hemisphere. Conclusions/Significance: The heterogeneity of MEG sources implies that multiple generators are active during huma

    An insight into imbalanced Big Data classification: outcomes and challenges

    Get PDF
    Big Data applications are emerging during the last years, and researchers from many disciplines are aware of the high advantages related to the knowledge extraction from this type of problem. However, traditional learning approaches cannot be directly applied due to scalability issues. To overcome this issue, the MapReduce framework has arisen as a “de facto” solution. Basically, it carries out a “divide-and-conquer” distributed procedure in a fault-tolerant way to adapt for commodity hardware. Being still a recent discipline, few research has been conducted on imbalanced classification for Big Data. The reasons behind this are mainly the difficulties in adapting standard techniques to the MapReduce programming style. Additionally, inner problems of imbalanced data, namely lack of data and small disjuncts, are accentuated during the data partitioning to fit the MapReduce programming style. This paper is designed under three main pillars. First, to present the first outcomes for imbalanced classification in Big Data problems, introducing the current research state of this area. Second, to analyze the behavior of standard pre-processing techniques in this particular framework. Finally, taking into account the experimental results obtained throughout this work, we will carry out a discussion on the challenges and future directions for the topic.This work has been partially supported by the Spanish Ministry of Science and Technology under Projects TIN2014-57251-P and TIN2015-68454-R, the Andalusian Research Plan P11-TIC-7765, the Foundation BBVA Project 75/2016 BigDaPTOOLS, and the National Science Foundation (NSF) Grant IIS-1447795
    • 

    corecore