123 research outputs found

    Ethnic disparities in tuberculosis incidence and related factors among indigenous and other communities in ethnically diverse Suriname

    Get PDF
    Background: In Suriname, a country home to many ethnic groups, a high incidence of tuberculosis (TB) has been found among Indigenous Trio Amerindians. However, whether wider ethnic disparities in TB incidence and its associated risk factors (e.g., diabetes mellitus and HIV) exist in Suriname, is not known. We sought to investigate disparities in TB incidence and its risk factors on ethnicity in Suriname, as this could give way to targeted TB intervention programs. Methods: Anonymized patient data from 2011 to 2015 was extracted from the National TB Registry and analyzed. Differences in the five-year incidence rates of TB for the six largest ethnic groups-Creole, Hindustani, Indigenous, Javanese, Maroon, and Mixed-were assessed using a chi-square goodness-of-fit test, and TB patient differences regarding ethnicity were evaluated for selected factors using a multinomial logistic regression with Creole patients as reference. Results: 662 Patients were eligible for analyses with the following ethnic makeup: Creole (36.4%), Hindustani (15.6%), Indigenous (8.6%), Javanese (10.6%), Maroon (15.1%), and Mixed ethnicity (13.7%). Differences in five-year incidence rates for TB were significant, chi(2)(5, N = 662) = 244.42, p Conclusions: Our study has demonstrated that ethnic disparities in tuberculosis incidence exist in Suriname and that they are associated with specific, known risk factors such as HIV (especially for Creole people). For Indigenous people, risk factors may include diminished access to health care facilities and low socioeconomic status. However, direct data on these factors was unavailable. These findings call for targeted national intervention programs-with special attention given to the vulnerabilities of susceptible ethnic groups-and improved data collection

    Anemia in young children living in the Surinamese interior:The influence of age, nutritional status and ethnicity

    Get PDF
    Purpose: This study investigates the prevalence of anemia in young children living in the interior of Suriname and the influence of the associated factors age, nutritional status and ethnicity. Patients and methods: In this cross-sectional observational study, 606 children aged 1-5 years from three different regions of Suriname's interior were included, and hemoglobin levels and anthropometric measurements were collected. Logistic regression models were computed to examine independent associations between anemic and nonanemic groups and to measure the influence of age, nutritional status and ethnicity. Results: A total of 606 children were included, of whom 330 (55%) were aged 1-3 years and 276 were aged 4-5 years. The overall prevalence of anemia was 63%. Younger age was associated with anemia (odds ratio [OR]= 1.78; 95% confidence interval [CI]: 1.27-2.51). Anemia was less prevalent in Amerindian than in Maroon children (OR=0.51; 95% CI: 0.34-0.76). Hemoglobin level was not influenced by nutritional status nor by sex. Conclusion: The prevalence of anemia in children aged 1-5 years living in Suriname's interior is high (63%) compared to that in similar aged children in Latin America and the Caribbean (4-45%). Children aged 1-3 years were more affected than those aged 4-5 years as were Maroon children compared to Amerindian children. Nutritional status and sex were not of influence

    Expression of endoglin (CD105) in cervical cancer

    Get PDF
    In this study, we have investigated the role of endoglin (CD105), a regulator of transforming growth factor (TGF)-β1 signalling on endothelial cells, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor-A (VEGF-A) in cervical cancer. We have measured the number and determined the location of both newly formed (CD105-positive) and the overall number of (CD31-positive) blood vessels, and bFGF and VEGF-A expression using immunohistochemistry in 30 cervical carcinoma specimens. Vascular endothelial growth factor-A mRNA expression was determined using RNA-in situ hybridisation. CD105- and CD31-positive vessels and bFGF- and VEGF-A-positive cells were predominantly present in the stroma. The presence of CD105- and CD31-positive vessels in the stroma did neither correlate with the number of VEGF-A-positive cells nor the number of bFGF-positive cells. However, the number of CD105- and CD31-positive vessels was associated with the expression of VEGF-A mRNA in the epithelial cell clusters (P=0.013 and P=0.005, respectively). The presence of CD105-positive and CD31-positive vessels was associated with the expression of αvβ6 (a TGF-β1 activator; P=0.013 and P=0.006, respectively). Clinically, the number of CD105-positive vessels associated with the number of lymph node metastasis (P<0.001). Furthermore, the presence of CD105-positive vessels within the epithelial cell clusters associated with poor disease-free survival (P=0.007)

    XRCC1 haploinsufficiency in mice has little effect on aging, but adversely modifies exposure-dependent susceptibility

    Get PDF
    Oxidative DNA damage plays a role in disease development and the aging process. A prominent participant in orchestrating the repair of oxidative DNA damage, particularly single-strand breaks, is the scaffold protein XRCC1. A series of chronological and biological aging parameters in XRCC1 heterozygous (HZ) mice were examined. HZ and wild-type (WT) C57BL/6 mice exhibit a similar median lifespan of ~26 months and a nearly identical maximal life expectancy of ~37 months. However, a number of HZ animals (7 of 92) showed a propensity for abdominal organ rupture, which may stem from developmental abnormalities given the prominent role of XRCC1 in endoderm and mesoderm formation. For other end-points evaluated—weight, fat composition, blood chemistries, condition of major organs, tissues and relevant cell types, behavior, brain volume and function, and chromosome and telomere integrity—HZ mice exhibited by-and-large a normal phenotype. Treatment of animals with the alkylating agent azoxymethane resulted in both liver toxicity and an increased incidence of precancerous lesions in the colon of HZ mice. Our study indicates that XRCC1 haploinsufficiency in mammals has little effect on chronological longevity and many key biological markers of aging in the absence of environmental challenges, but may adversely affect normal animal development or increase disease susceptibility to a relevant genotoxic exposure

    XRCC1 haploinsufficiency in mice has little effect on aging, but adversely modifies exposure-dependent susceptibility

    Get PDF
    Oxidative DNA damage plays a role in disease development and the aging process. A prominent participant in orchestrating the repair of oxidative DNA damage, particularly single-strand breaks, is the scaffold protein XRCC1. A series of chronological and biological aging parameters in XRCC1 heterozygous (HZ) mice were examined. HZ and wild-type (WT) C57BL/6 mice exhibit a similar median lifespan of ~26 months and a nearly identical maximal life expectancy of ~37 months. However, a number of HZ animals (7 of 92) showed a propensity for abdominal organ rupture, which may stem from developmental abnormalities given the prominent role of XRCC1 in endoderm and mesoderm formation. For other end-points evaluated—weight, fat composition, blood chemistries, condition of major organs, tissues and relevant cell types, behavior, brain volume and function, and chromosome and telomere integrity—HZ mice exhibited by-and-large a normal phenotype. Treatment of animals with the alkylating agent azoxymethane resulted in both liver toxicity and an increased incidence of precancerous lesions in the colon of HZ mice. Our study indicates that XRCC1 haploinsufficiency in mammals has little effect on chronological longevity and many key biological markers of aging in the absence of environmental challenges, but may adversely affect normal animal development or increase disease susceptibility to a relevant genotoxic exposure

    Endoglin (CD105) expression in ovarian serous carcinoma effusions is related to chemotherapy status

    Get PDF
    Endoglin (CD105), a cell surface co-receptor for transforming growth factor-β, is expressed in proliferating endothelial cells, as well as in cancer cells. We studied endoglin expression and its clinical relevance in effusions, primary tumors, and solid metastatic lesions from women with advanced-stage ovarian serous carcinoma. Endoglin expression was analyzed by immunohistochemistry in effusions (n = 211; 174 peritoneal, 37 pleural). Cellular endoglin staining was analyzed for association with the concentration of soluble endoglin (previously determined by ELISA) in 95 corresponding effusions and analyzed for correlation with clinicopathologic parameters, including survival. Endoglin expression was additionally studied in 34 patient-matched primary tumors and solid metastases. Carcinoma and mesothelial cells expressed endoglin in 95/211 (45%) and 133/211 (63%) effusions, respectively. Carcinoma cell endoglin expression was more frequent in effusions from patients aged ≤60 years (p = 0.048) and in post- compared to prechemotherapy effusions (p = 0.014), whereas mesothelial cell endoglin expression was higher in prechemotherapy effusions (p = 0.021). No association was found between cellular endoglin expression and its soluble effusion concentration. Endoglin was expressed in 17/34 (50%) primary tumors and 19/34 (56%) metastases, with significantly higher percentage of immunostained cells in solid metastases compared to effusions (p = 0.036). Endoglin expression did not correlate with survival. Tumor cell endoglin expression is higher in post- vs. prechemotherapy effusions, whereas the opposite is seen in mesothelial cells. Together with its upregulation in solid metastases, this suggests that the expression and biological role of endoglin may differ between cell populations and change along tumor progression in ovarian carcinoma

    Impact of Adaptation Currents on Synchronization of Coupled Exponential Integrate-and-Fire Neurons

    Get PDF
    The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC) and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF) neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency oscillations in local excitatory networks, but indicate that inhibition rather than excitation generates coherent rhythms at higher frequencies

    CD105 (Endoglin) exerts prognostic effects via its role in the microvascular niche of paediatric high grade glioma

    Get PDF
    Paediatric high grade glioma (pHGG) (World Health Organisation astrocytoma grades III and IV) remains poor prognosis tumours, with a median survival of only 15 months following diagnosis. Current investigation of anti-angiogenic strategies has focused on adult glioblastoma multiforme (GBM) with phase III trials targeting vascular endothelial growth factor continuing. In this study we investigated whether the degree of vascularity correlated with prognosis in a large cohort of pHGG (n = 150) and whether different vessel markers carried different prognostic value. We found that CD105 (endoglin) had a strongly significant association with poor prognosis on multivariate analysis (p = <0.001). Supervised hierarchical clustering of genome wide gene expression data identified 13 genes associated with differential degrees of vascularity in the cohort. The novel angiogenesis-associated genes identified in this analysis (including MIPOL-1 and ENPP5) were validated by realtime polymerase chain reaction. We also demonstrate that CD105 positive blood vessels associate with CD133 positive tumour cells and that a proportion of CD105 positive vessel cells demonstrates co-positivity for CD133, suggesting that the recently described phenomenon of vasculogenic mimicry occurs in pHGG. Together, the data suggest that targeting angiogenesis, and in particular CD105, is a valid therapeutic strategy for pHGG

    Breakpoint mapping of 13 large parkin deletions/duplications reveals an exon 4 deletion and an exon 7 duplication as founder mutations

    Get PDF
    Early-onset Parkinson’s disease (EOPD) has been associated with recessive mutations in parkin (PARK2). About half of the mutations found in parkin are genomic rearrangements, i.e., large deletions or duplications. Although many different rearrangements have been found in parkin before, the exact breakpoints involving these rearrangements are rarely mapped. In the present study, the exact breakpoints of 13 different parkin deletions/duplications, detected in 13 patients out of a total screened sample of 116 EOPD patients using Multiple Ligation Probe Amplification (MLPA) analysis, were mapped using real time quantitative polymerase chain reaction (PCR), long-range PCR and sequence analysis. Deletion/duplication-specific PCR tests were developed as a rapid and low cost tool to confirm MLPA results and to test family members or patients with similar parkin deletions/duplications. Besides several different deletions, an exon 3 deletion, an exon 4 deletion and an exon 7 duplication were found in multiple families. Haplotype analysis in four families showed that a common haplotype of 1.2 Mb could be distinguished for the exon 7 duplication and a common haplotype of 6.3 Mb for the deletion of exon 4. These findings suggest common founder effects for distinct large rearrangements in parkin
    corecore