250 research outputs found

    G protein–coupled estrogen receptor: a promising therapeutic target for aldosterone-induced hypertension

    Get PDF
    Aldosterone is one of the most essential hormones synthesized by the adrenal gland because it regulates water and electrolyte balance. G protein–coupled estrogen receptor (GPER) is a newly discovered aldosterone receptor, which is proposed to mediate the non-genomic pathways of aldosterone while the hormone simultaneously interacts with mineralocorticoid receptor. In contrast to its cardio-protective role in postmenopausal women via its interaction with estrogen, GPER seems to trigger vasoconstriction effects and can further induce water and sodium retention in the presence of aldosterone, indicating two entirely different binding sites and effects for estrogen and aldosterone. Accumulating evidence also points to a role of aldosterone in mediating hypertension and its risk factors via the interaction with GPER. Therefore, with this review, we aimed to summarize the research on these interactions to help (1) elucidate the role of GPER activated by aldosterone in the blood vessels, heart, and kidney; (2) compare the non-genomic actions between aldosterone and estrogen mediated by GPER; and (3) address the potential of GPER as a new promising therapeutic target for aldosterone-induced hypertension

    LpL^p Boundedness of Commutators of Riesz Transforms associated to Schr\"{o}dinger Operator

    Get PDF
    In this paper we consider LpL^p boundedness of some commutators of Riesz transforms associated to Schr\"{o}dinger operator P=−Δ+V(x)P=-\Delta+V(x) on Rn,n≄3\mathbb{R}^n, n\geq 3. We assume that V(x)V(x) is non-zero, nonnegative, and belongs to BqB_q for some q≄n/2q \geq n/2. Let $T_1=(-\Delta+V)^{-1}V,\ T_2=(-\Delta+V)^{-1/2}V^{1/2}and and T_3=(-\Delta+V)^{-1/2}\nabla.Weobtainthat. We obtain that [b,T_j] (j=1,2,3)areboundedoperatorson are bounded operators on L^p(\mathbb{R}^n)when when prangesinainterval,where ranges in a interval, where b \in \mathbf{BMO}(\mathbb{R}^n).Notethatthekernelof. Note that the kernel of T_j (j=1,2,3)$ has no smoothness.Comment: 14 pages, 0 figure

    Geodynamic effects of subducted seamount at the Manila Trench: Insights from numerical modeling

    Get PDF
    Abstract We used numerical modeling to investigate the geodynamic effects of subducted seamounts at the Manila Trench. A series of numerical modeling experiments were conducted with variable parameters, including the activation volume (Vact) and cohesion (C), which influence lithospheric rheology, the plate convergence velocity, and the age of subducting slab. Modeling results indicate that varying the Vact and C within an appropriate range have limited effects on the geodynamic process of subduction. A lower Vact allows the slab to sink more easily and results in a steeper dip angle. A slab break-off is more likely to occur under subduction at depths of 100–300 km, while the existence of a seamount further promotes the break-off process. The convergence rate is a key parameter affecting the break-off timing and depth. In contrast, under subduction where subducted oceanic plate move faster upper plate, the model results exhibit non-break-off, steady subduction. Slab age is another factor controlling break-off, where break-off time extends with slab age. A subduction without seamount will cause a ~2 Myr delay in break-off timing. We suggest that the low-velocity zone under the Manila Trench at 17o N is the result of a break-off event due to subduction of the Zhenbei-Huangyan Seamount Chain. Further to the north, such as the location at 19o N, the absence of seamount and an older oceanic crust would favor a delay in break-off timing during subduction

    A Combined Risk Score Model to Assess Prognostic Value in Patients with Soft Tissue Sarcomas

    Get PDF
    A study by Tsvetkov et al. recently published a proposed novel form of copper-induced cell death in Science; however, few studies have looked into the possible mechanism in soft tissue sarcoma (STS). Herein, this study sought to investigate the function of cuproptosis-related genes (CRGs) in the development of tumor-associated immune cells and the prognosis of sarcoma. Herein, this study aimed to explore the role of cuproptosis-related genes (CRGs) in the development, tumor-associated immune cells, and the prognosis of sarcoma. Methods: The prognostic model was established via the least absolute shrinkage and selection operator (LASSO) algorithm as well as multivariate Cox regression analysis. The stromal scores, immune scores, ESTIMA scores, and tumor purity of sarcoma patients were evaluated by the ESTIMATE algorithm. Functional analyses were performed to investigate the underlying mechanisms of immune cell infiltration and the prognosis of CRGs in sarcoma. Results: Two molecular subgroups with different CRG expression patterns were recognized, which showed that patients with a higher immune score and more active immune status were prone to have better prognostic survival. Moreover, GO and KEGG analyses showed that these differentially expressed CRGs were mainly enriched in metabolic/ions-related signaling pathways, indicating that CRGs may have impacts on the immune cell infiltration and prognosis of sarcoma via regulating the bioprocess of mitochondria and consequently affecting the immune microenvironment. The expression levels of CRGs were closely correlated to the immunity condition and prognostic survival of sarcoma patients. Conclusions: The interaction between cuproptosis and immunity in sarcoma may provide a novel insight into the study of molecular mechanisms and candidate biomarkers for the prognosis, resulting in effective treatments for sarcoma patients
    • 

    corecore