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Abstract

In this paper we consider Lp boundedness of some commutators of Riesz transforms associated to Schrödinger operator P =
−Δ + V (x) on R

n, n � 3. We assume that V (x) is non-zero, non-negative, and belongs to Bq for some q � n/2. Let T1 =
(−Δ + V )−1V , T2 = (−Δ + V )−1/2V 1/2 and T3 = (−Δ + V )−1/2∇. We obtain that [b,Tj ] (j = 1,2,3) are bounded operators
on Lp(Rn) when p ranges in a interval, where b ∈ BMO(Rn). Note that the kernel of Tj (j = 1,2,3) has no smoothness.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let P = −Δ + V (x) be the Schrödinger differential operator on R
n, n � 3. Throughout the paper we will assume

that V (x) is a non-zero, non-negative potential, and belongs to Bq for some q > n/2. Let Tj (j = 1,2,3) be the
Riesz transforms associated to Schrödinger operators, namely, T1 = (−Δ + V )−1V , T2 = (−Δ + V )−1/2V 1/2 and
T3 = (−Δ + V )−1/2∇ . Lp boundedness of Tj (j = 1,2,3) was widely studied [7,8]. In this paper, we will discuss
the Lp boundedness of the commutator operators [b,Tj ] = bTj − Tjb (j = 1,2,3), where b ∈ BMO(Rn).

A non-negative locally Lq integrable function V (x) on R
n is said to belong to Bq (1 < q < ∞), if there exists

C > 0 such that the reverse Hölder inequality

(
1

|B|
∫
B

V q dx

)1/q

� C

(
1

|B|
∫
B

V dx

)
(1)

holds for every ball B in R
n.
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Remark 1. By Hölder inequality we can get that Bq1 ⊂ Bq2 , for q1 � q2 > 1. One remarkable feature about the Bq

class is that, if V ∈ Bq for some q > 1, then there exists ε > 0, which depends only on n and the constant C in (1),
such that V ∈ Bq+ε [2]. It is also well known that, if V ∈ Bq , q > 1, then V (x)dx is a doubling measure, namely for
any r > 0, x ∈ R

n,∫
B(x,2r)

V (y) dy � C0

∫
B(x,r)

V (y) dy. (2)

It was proved that if V ∈ Bn, then T3 is a Calderón–Zygmund operator [7]. According to the classical result of
R. Coifman, R. Rochberg, and G. Weiss [1], [b,T3] is bounded on Lp (1 < p < ∞) in this case. So we restrict
ourselves to the case that V ∈ Bq (n/2 < q < n), when considering [b,T3].

We recall that an operator T taking C∞
c (Rn) into L1

loc(R
n) is called a Calderón–Zygmund operator if

(a) T extends to a bounded linear operator on L2(Rn),
(b) there exists a kernel K such that for every f ∈ L∞

c (Rn),

Tf (x) =
∫
Rn

K(x, y)f (y) dy a.e. on {suppf }c,

(c) the kernel K(x,y) satisfies the Calderón–Zygmund estimate

∣∣K(x,y)
∣∣ � C

|x − y|n ; (3)

∣∣K(x + h,y) − K(x,y)
∣∣ � C|h|δ

|x − y|n+δ
; (4)

∣∣K(x,y + h) − K(x,y)
∣∣ � C|h|δ

|x − y|n+δ
; (5)

for x, y ∈ Rn, |h| < |x−y|
2 and for some δ > 0.

If T is a Calderón–Zygmund operator, b ∈ BMO, the boundedness on every Lp (1 < p < ∞) of [b,T ] was first
discovered by Coifman, Rochberg and Weiss [1]. Later, Strömberg [4] gave a simple proof, adopting the idea of
relating commutators with the sharp maximal operator of Fefferman and Stein. In both proofs, the smoothness of the
kernel (4) plays a key role. However, in our problem the kernel has no smoothness of this kind due to V . This difficulty
can be overcome by our basic idea. We discover that the kernels have some other kind of smoothness.

Definition 1. K(x,y) is said to satisfy H(m) for some m � 1, if there exists a constant C > 0, such that, ∀l > 0,
x, x0 ∈ R

n with |x − x0| � l, then

∞∑
k=5

k
(
2kl

) n
m′

( ∫
2k l�|y−x0|<2k+1l

∣∣K(x,y) − K(x0, y)
∣∣m dy

)1/m

< C, (6)

where 1/m′ = 1 − 1/m.

This kind of smoothness was not new. We find that the case m = 1 was given by Meyer [5]. It is easily seen
that if K(x,y) satisfies (4), then K(x,y) satisfies H(m) for every m � 1. By Hölder inequality we can get that
if K(x,y) satisfies H(m) for some m � 1, then K(x,y) satisfies H(t) for 1 � t � m. We now list some results
concerning Lp boundedness of Tj (j = 1,2,3), and refer the readers to [7] for further details. We will adopt the
notation 1/p′ = 1 − 1/p for p � 1 throughout the paper.

Theorem A. (See [7, Theorem 3.1, p. 526].) Suppose V ∈ Bq and q � n/2. Then, for q ′ � p � ∞,∥∥(−Δ + V )−1Vf
∥∥

p
� Cp‖f ‖p.
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Theorem B. (See [7, Theorem 5.10, p. 542].) Suppose V ∈ Bq and q � n/2. Then, for (2q)′ � p � ∞,∥∥(−Δ + V )−1/2V 1/2f
∥∥

p
� Cp‖f ‖p.

Theorem C. (See [7, Theorem 0.5, p. 514].) Suppose V ∈ Bq and n
2 � q < n. Let (1/p0) = (1/q) − (1/n). Then, for

p′
0 � p < ∞,∥∥(−Δ + V )−1/2∇f

∥∥
p

� Cp‖f ‖p.

The basic idea in [7] is that, to exploit a pointwise estimate of the kernel and the comparison to the kernel of
classical Riesz transform. Generally, it is based on the following two basic facts. If V is large, then one expects the
kernel itself has a good decay. On the other hand, if V is small, then it is close to the classical Riesz transform. In this
paper, we adopt a different idea. Since we know that the kernel do not satisfy the Calderón–Zygmund estimate (4), we
study how close it is. See Section 2.

We will show that the kernels have very good smoothness with respect to the first variable of the following strong
type. It is almost (4). There exists a constant C > 0 and δ > 0, such that, for some m > 1, ∀l > 0, x, x0 ∈ R

n with
|x − x0| � l, then

∞∑
k=5

2kδ
(
2kl

) n
m′

( ∫
2k l�|y−x0|<2k+1l

∣∣K(x,y) − K(x0, y)
∣∣m dy

)1/m

< C. (7)

Recall that T1 = (−Δ + V )−1V, T2 = (−Δ + V )−1/2V 1/2, and T3 = (−Δ + V )−1/2∇ . Now we state our main
results.

Theorem 1. Suppose V ∈ Bq and q � n/2. Let b ∈ BMO. Then, we have

(i) If q ′ � p < ∞,∥∥[b,T1]f
∥∥

p
� Cp‖b‖BMO‖f ‖p;

(ii) If (2q)′ � p < ∞,∥∥[b,T2]f
∥∥

p
� Cp‖b‖BMO‖f ‖p;

(iii) If p′
0 � p < ∞, let (1/p0) = (1/q) − (1/n),∥∥[b,T3]f

∥∥
p

� Cp‖b‖BMO‖f ‖p.

We know that T ∗
1 = V (−Δ + V )−1, T ∗

2 = V 1/2(−Δ + V )−1/2, and T ∗
3 = −∇(−Δ + V )−1/2. By duality we can

easily get that∥∥[
b,T ∗

1

]
f

∥∥
p

� Cp‖b‖BMO‖f ‖p, 1 < p � q,∥∥[
b,T ∗

2

]
f

∥∥
p

� Cp‖b‖BMO‖f ‖p, 1 < p � 2q,∥∥[
b,T ∗

3

]
f

∥∥
p

� Cp‖b‖BMO‖f ‖p, 1 < p � p0.

From Theorem 1(i), we can get the result concerning second order Riesz transform. Let T4 = (−Δ+V )−1∇2, then

T ∗
4 = ∇2(−Δ+V )−1. Indeed, T4 = (−Δ+V )−1∇2 = (−Δ+V )−1ΔΔ−1∇2 = (I − (−Δ+V )V )∇2

Δ
= (I −T1)

∇2

Δ
.

We have

Corollary 1. Suppose V ∈ Bq and q � n/2. Then∥∥[b,T4]f
∥∥

p
� Cp‖b‖BMO‖f ‖p, q ′ � p < ∞,

and ∥∥[
b,T ∗

4

]
f

∥∥
p

� Cp‖b‖BMO‖f ‖p, 1 < p � q.
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For classical Riesz transform, the converse problem was also considered in [1]. This implies a new characterization
of BMO. In this paper we also discuss the converse problem. Namely, if [b,T3] is bounded on L2, do we have
b ∈ BMO? The answer is negative for general V ∈ Bq . It is due to that, for some good V , the kernel of T3 is better
than that of Riesz transform, which makes that the commutator can absorb mild singularity. We give a counterexample
for V ≡ 1. On the other hand, if imposing some integrability condition on V , we can have the converse.

Throughout this paper, unless otherwise indicated, we will use C and c to denote constants, which are not nec-
essarily the same at each occurrence. By A ∼ B , we mean that there exist constants C > 0 and c > 0, such that
c � A/B � C.

The paper is organized as following. In Section 2, we will give the estimates of the kernels Kj (j = 1,2,3) of the
operators Tj . The proof of Theorem 1 is stated in Section 3. In Section 4, we discuss the converse problem.

2. Estimate of the kernels

This section is devoted to give the estimate of the kernels associated to Tj (j = 1,2,3) and denoted by
Kj(x, y) (j = 1,2,3) respectively. Let Γ (x, y, τ ) denote the fundamental solution for the Schrödinger operator
−Δ + (V (x) + iτ ), τ ∈ R, and Γ0(x, y, τ ) for the operator −Δ + iτ , τ ∈ R. Clearly, Γ (x, y, τ ) = Γ (y, x,−τ).

For x ∈ R
n, the function m(x,V ) is defined by

1

m(x,V )
= sup

{
r > 0:

1

rn−2

∫
B(x, r)V (y) dy � 1

}
.

The function m(x,V ) reflects the scale of V (x) essentially, but behaves better. It is deeply studied in [7], and will
play a crucial role in our proof. We list some properties of m(x,V ) here, and their proof can be found in [7].

Lemma A. (See [7, Lemma 1.4].) Assume V ∈ Bq for some q > n/2, then there exist C > 0, c > 0, k0 > 0, such that,
for any x, y in R

n, and 0 < r < R < ∞,

(a) 0 < m(x,V ) < ∞,

(b) If h = 1
m(x,V )

, then 1
hn−2

∫
B(x,h)

V (y) dy = 1,

(c) m(x,V ) ∼ m(y,V ), if |x − y| � C
m(x,V )

,

(d) m(y,V ) � C{1 + |x − y|m(x,V )}k0m(x,V ),

(e) m(y,V ) � cm(x,V ){1 + |x − y|m(x,V )}−k0/(1+k0),

(f) c{1 + |x − y|m(y,V )}1/(k0+1) � 1 + |x − y|m(x,V ) � C{1 + |x − y|m(y,V )}k0+1,

(g) 1
rn−2

∫
B(x,r)

V (y) dy � C(R
r
)(n/q)−2 · 1

Rn−2

∫
B(x,R)

V (y) dy.

Estimating the kernels mainly relies on functional calculus and a pointwise estimate of Γ (x, y, τ ) that was given
in [7].

Theorem D. (See [7, Theorem 2.7].) Suppose V ∈ Bn/2. Then, for any x, y ∈ R
n, τ ∈ R, and integer k > 0,

Γ (x, y, τ ) � Ck

{1 + |τ |1/2|x − y|}k{1 + m(x,V )|x − y|}k · 1

|x − y|n−2
,

where Ck is a constant independent of x, y, τ .

The next lemma is used to control the integration of V on a ball.

Lemma 1. Suppose V ∈ Bq for some q > n/2. Let N > log2 C0 + 1, where C0 is the constant in (2). Then for any
x0 ∈ R

n, R > 0,

1

{1 + m(x0,V )R}N
∫

B(x0,R)

V (ξ) dξ � CRn−2.
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Proof. There exists a integer j0 ∈ Z such that 2j0R � 1
m(x0,V )

< 2j0+1R. We will discuss in following two cases.

Case 1. j0 < 0. By (2), Lemma 1, and (b) of Lemma A, we can get

1

{1 + m(x0,V )R}N
∫

B(x0,R)

V (ξ) dξ � 1

(2−j0)N

∫
B(x0,R)

V (ξ) dξ � 1

{2−j0}N C
−j0
0

(
2j0R

)n−2

� Rn−2 (since N > log2 C0).

Case 2. j0 � 0. By (b) and (g) of Lemma A, we can get

1

{1 + m(x0,V )R}N
∫

B(x0,R)

V (ξ) dξ �
∫

B(x0,R)

V (ξ) dξ � Rn−2 1

Rn−2

∫
B(x0,R)

V (ξ) dξ � Rn−2.

This completes the proof of Lemma 1. �
Before giving the estimate of the kernels, we still needs one lemma, which is proved in [7].

Lemma B. (See [7, Lemma 4.6].) Suppose V ∈ Bq0 , q0 > 1. Assume that −Δu + (V (x) + iτ )u = 0 in B(x0,2R) for
some x0 ∈ R

n, R > 0. Then

(a) for x ∈ B(x0,R),

∣∣∇u(x)
∣∣ � C sup

B(x0,2R)

|u| ·
∫

B(x0,2R)

V (y)

|x − y|n−1
dy + C

Rn+1

∫
B(x0,2R)

∣∣u(y)
∣∣dy,

(b) if (n/2) < q0 < n, let (1/t) = (1/q0) − (1/n), k0 > log2 C0 + 1,( ∫
B(x0,R)

|∇u|t dx

)1/t

� CR(n/q0)−2{1 + Rm(x0,V )
}k0 sup

B(x0,2R)

|u|.

Now we are ready to give the estimate of the kernels.

Lemma 2. Suppose V ∈ Bq for some q > n/2. Then, there exists δ > 0 and for any integer k > 0, 0 < h < |x − y|/16,

∣∣K1(x, y)
∣∣ � Ck

{1 + m(x,V )|x − y|}k · 1

|x − y|n−2
V (y), (8)

∣∣K1(x + h,y) − K1(x, y)
∣∣ � Ck

{1 + m(x,V )|x − y|}k · |h|δ
|x − y|n−2+δ

V (y). (9)

Lemma 3. Suppose V ∈ Bq for some q > n/2. Then, there exists δ > 0 and for any integer k > 0, 0 < h < |x − y|/16,

∣∣K2(x, y)
∣∣ � Ck

{1 + m(x,V )|x − y|}k · 1

|x − y|n−1
V (y)1/2, (10)

∣∣K2(x + h,y) − K2(x, y)
∣∣ � Ck

{1 + m(y,V )|x − y|}k · |h|δ
|x − y|n−1+δ

V (y)1/2. (11)

Lemma 4. Suppose V ∈ Bq for some n/2 < q < n. Then, there exists δ > 0 and for any integer k > 0, 0 < h <

|x − y|/16,
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∣∣K3(x, y)
∣∣ � Ck

{1 + m(x,V )|x − y|}k
1

|x − y|n−1
·
( ∫

B(y,|x−y|)

V (ξ)

|y − ξ |n−1
dξ + 1

|x − y|
)

, (12)

∣∣K3(x + h,y) − K3(x, y)
∣∣

� Ck

{1 + m(x,V )|x − y|}k
|h|δ

|x − y|n−1+δ
·
( ∫

B(y,|x−y|)

V (ξ)

|y − ξ |n−1
dξ + 1

|x − y|
)

. (13)

Remark 2. If V ∈ Bn, then (4) follows immediately from (13). This can tell us how the kernel behaves when V

changes. However, we do not have similar result about the smoothness with respect to the second variable.

Proof of Lemma 2. We easily know that K1(x, y) = Γ (x, y,0)V (y). It immediately follows from Theorem D that,
for any x, y ∈ R

n,

∣∣K1(x, y)
∣∣ � Ck

{1 + m(x,V )|x − y|}k · 1

|x − y|n−2
V (y).

For (9), fix x, y ∈ R
n, and fix n/2 < q0 < min(n, q), then we know V ∈ Bq0 . Let R = |x−y|

8 , 1/t = 1/q0 − 1/n,
then δ = 1−n/t > 0 and for any 0 < h < R

2 , it follows from the embedding theorem of Morrey (see [3]) and Lemma B
that ∣∣K1(x + h,y) − K1(x, y)

∣∣ �
∣∣Γ (x + h,y,0) − Γ (x, y,0)

∣∣V (y)

� C|h|1−(n/t)

( ∫
B(x,R)

∣∣∇xΓ (z, y,0)
∣∣t dz

)1/t

V (y)

� C|h|1−(n/t)R(n/q0)−2{1 + Rm(x,V )
}k0 sup

z∈B(x,2R)

∣∣Γ (z, y,0)
∣∣V (y)

� C
|h|δ
Rδ

{
1 + Rm(x,V )

}k0 sup
z∈B(x,2R)

∣∣Γ (z, y,0)
∣∣V (y)

� C
|h|δ
Rδ

{
1 + Rm(x,V )

}k0 sup
z∈B(x,2R)

Ck1

{1 + m(y,V )|z − y|}k1
· 1

|z − y|n−2
V (y)

� Ck

|h|δ
|x − y|δ

1

{1 + m(x,V )|x − y|}k · 1

|x − y|n−2
V (y) (k1 large),

where we used (f) of Lemma A in the last inequality. �
Proof of Lemma 3. By functional calculus, we may write

(−Δ + V )−1/2 = − 1

2π

∫
R

(−iτ )−1/2(−Δ + V + iτ )−1 dτ,

then we know that

K2(x, y) = − 1

2π

∫
R

(−iτ )−1/2Γ (x, y, τ ) dτV (y)1/2. (14)

In order to estimate the integration, we claim that: For k > 2, then∫
R

|τ |−1/2{1 + |τ |1/2|x − y|}−k
dτ � Ck

|x − y| . (15)

In fact, we have
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∫
R

|τ |−1/2{1 + |τ |1/2|x − y|}−k
dτ =

( ∫
|τ |�|x−y|−2

+
∫

|τ |�|x−y|−2

)
|τ |−1/2{1 + |τ |1/2|x − y|}−k

dτ

�
∫

|τ |�|x−y|−2

|τ |−1/2 dτ +
∫

|τ |�|x−y|−2

|τ |(−k−1)/2|x − y|−k dτ

� Ck

|x − y| .

From Theorem D and the estimate (15), we immediately get (10). For (11), fix x, y ∈ R
n, and fix n/2 < q0 <

min(n, q), then we know V ∈ Bq0 . Let R = |x−y|
8 , 1/t = 1/q0 − 1/n, then δ = 1 − n/t > 0 and for any 0 < h < R

2 ,
we have∣∣K2(x + h,y) − K2(x, y)

∣∣ � 1

2π

∫
R

|τ |−1/2
∣∣Γ (x + h,y, τ ) − Γ (x, y, τ )

∣∣dτV (y)1/2. (16)

Similarly, it follows from the embedding theorem of Morrey and Lemma B that

∣∣Γ (x + h,y, τ ) − Γ (x, y, τ )
∣∣ � C|h|1−(n/t)

( ∫
B(x,R)

∣∣∇xΓ (z, y, τ )
∣∣t dz

)1/t

� C|h|1−(n/t)R(n/q0)−2{1 + Rm(x,V )
}k0 sup

z∈B(x,2R)

∣∣Γ (z, y, τ )
∣∣

� C
|h|δ
Rδ

{
1 + Rm(x,V )

}k0 sup
z∈B(x,2R)

∣∣Γ (z, y, τ )
∣∣

� C
|h|δ
Rδ

{
1 + Rm(x,V )

}k0 sup
z∈B(x,2R)

Ck{1 + |τ |1/2|z − y|}−k

{1 + m(y,V )|z − y|}k · 1

|z − y|n−2

� Ck

|h|δ
|x − y|δ

{1 + |τ |1/2|x − y|}−k

{1 + m(y,V )|x − y|}k · 1

|x − y|n−2
.

Hence, insert this to (16), it follows from the estimate (15) that

∣∣K2(x + h,y) − K2(x, y)
∣∣ � Ck

|h|δ
|x − y|n−1+δ

1

{1 + m(y,V )|x − y|}k V (y)1/2. �
Proof of Lemma 4. By partial integral, we know that

K3(x, y) = 1

2π

∫
R

(−iτ )−1/2∇yΓ (x, y, τ ) dτ. (17)

Fix x, y ∈ R
n, let R = |x−y|

8 , 1/t = 1/q − 1/n, δ = n/q − 2 > 0, and for any 0 < h < R
2 , we have

∣∣K3(x + h,y) − K3(x, y)
∣∣ � 1

2π

∫
R

|τ |−1/2
∣∣∇yΓ (x + h,y, τ ) − ∇yΓ (x, y, τ )

∣∣dτ. (18)

Similarly, it follows from the embedding theorem of Morrey and Lemma B that

∣∣∇yΓ (x + h,y, τ ) − ∇yΓ (x, y, τ )
∣∣ � C|h|1−(n/t)

( ∫
B(x,R)

∣∣∇x∇yΓ (z, y, τ )
∣∣t dz

)1/t

� C|h|1−(n/t)R(n/q)−2{1 + Rm(x,V )
}k0 sup

z∈B(x,2R)

∣∣∇yΓ (z, y, τ )
∣∣. (19)

Since Γ (z, y, τ ) = Γ (y, z,−τ), then ∇yΓ (z, y, τ ) = ∇xΓ (y, z,−τ). It follows from (a) of Lemma B that
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sup
z∈B(x,2R)

∣∣∇yΓ (z, y, τ )
∣∣ � sup

z∈B(x,2R)

∣∣∇xΓ (y, z,−τ)
∣∣

� sup
z∈B(x,2R)

{
sup

η∈B(y,|y−z|/4)

∣∣Γ (η, z,−τ)
∣∣ ·

∫
B(y,|z−y|/2)

V (ξ)

|y − ξ |n−1
dξ

+ C

|y − z|n+1

∫
B(y,|z−y|/2)

Γ (ξ, z,−τ) dξ

}
.

Using the fact that |η−z| ∼ |y −z|, |ξ −z| ∼ |y −z| and |x −y| ∼ |y −z|, choosing k1 sufficiently large, it follows
from Theorem D and (f) of Lemma A that

sup
z∈B(x,2R)

∣∣∇yΓ (z, y, τ )
∣∣

� sup
z∈B(x,2R)

Ck1

{1 + |τ |1/2|y − z|}k1{1 + m(z,V )|y − z|}k1
· 1

|y − z|n−2

∫
B(y,|x−y|)

V (ξ)

|y − ξ |n−1
dξ

+ Ck1

{1 + |τ |1/2|y − z|}k1{1 + m(z,V )|y − z|}k1
· 1

|y − z|n−1

� Ck

{1 + |τ |1/2|x − y|}k{1 + m(x,V )|x − y|}k · 1

|x − y|n−2

∫
B(y,|x−y|)

V (ξ)

|y − ξ |n−1
dξ

+ Ck

{1 + |τ |1/2|x − y|}k{1 + m(x,V )|x − y|}k · 1

|x − y|n−1
. (20)

From the estimate (15) and (20), we immediately get (12). Inserting (20) to (19), we get that

∣∣∇yΓ (x + h,y, τ ) − ∇yΓ (x, y, τ )
∣∣ � Ck

|h|δ
|x − y|δ

Ck

{1 + |τ |1/2|x − y|}k{1 + m(x,V )|x − y|}k

×
(

1

|x − y|n−2

∫
B(y,|x−y|)

V (ξ)

|y − ξ |n−1
dξ + 1

|x − y|n−1

)
. (21)

Inserting (21) to (18), we get from the estimate (15) that∣∣K3(x + h,y) − K3(x, y)
∣∣

� Ck

|h|δ
|x − y|δ

1

{1 + m(x,V )|x − y|}k ·
(

1

|x − y|n−1

∫
B(y,|x−y|)

V (ξ)

|y − ξ |n−1
dξ + 1

|x − y|n
)

. �

3. Proof of main results

We first discuss the problem for general operator Tf (x) = ∫
K(x,y)f (y) dy. Later, we will specialize to Tj

(j = 1,2,3).

Proposition 1. Let m > 1, suppose T is bounded on Lp for every p ∈ (m′,∞), and K satisfies H(m), then ∀b ∈ BMO,
[b,T ] is bounded on Lp for every p ∈ (m′,∞), and∥∥[b,T ]f ∥∥

p
� Cp‖b‖BMO‖f ‖p.

We adopt the idea of Strömberg (cf. [6]). Recall that the sharp function of Fefferman–Stein is defined by

M
f (x) = sup
x∈B

1

|B|
∫
B

∣∣f (y) − fB

∣∣dy, (22)

where fB = 1 ∫
f (y)dy, and the supremum is taken on all balls B with x ∈ B .
|B| B
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Recall that BMO is defined by

BMO
(
R

n
) = {

f ∈ L1
loc

(
R

n
)
: ‖f ‖BMO = ∥∥M
f

∥∥∞ < ∞}
. (23)

Two basic facts about BMO may be in order. We use 2kB to denote the ball with the same center as B but with 2k

times radius.

|f2kB − fB | � C(k + 1)‖f ‖BMO, for k > 0. (24)

The second one is due to John–Nirenberg:

‖f ‖BMO ∼ sup
B

(
1

|B|
∫
B

∣∣f (y) − fB

∣∣p dy

)1/p

, for any p > 1. (25)

Proposition 1 follows immediately from the following lemma and a theorem of Fefferman–Stein on sharp function.

Lemma 5. Let T satisfies the same condition in Proposition 1. Then ∀s > m′, there exists constant Cs > 0, such that
∀f ∈ L1

loc, b ∈ BMO

M

([b,T ]f )

(x) � Cs‖b‖BMO
{
Ms(Tf )(x) + Ms(f )(x)

}
, (26)

where Ms(f ) = M(|f |s)1/s and M is Hardy–Littlewood maximal function.

Proof. Fix s > m′, f ∈ L1
loc, x ∈ R

n, and fix a ball I = B(x0, l) with x ∈ I. We only need to control J =
1
|I |

∫
I
|[b,T ]f (y) − ([b,T ]f )I |dy by the right-hand side of (26). Let f = f1 + f2, where f1 = f χ32I , f2 = f − f1.

Then [b,T ]f = [b − bI , T ]f = (b − bI )Tf − T (b − bI )f1 − T (b − bI )f2 � A1f + A2f + A3f , and we get

J � 1

|I |
∫
I

∣∣A1f (y) − (A1f )I
∣∣dy + 1

|I |
∫
I

∣∣A2f (y) − (A2f )I
∣∣dy + 1

|I |
∫
I

∣∣A3f (y) − (A3f )I
∣∣dy

� J1 + J2 + J3.

Step 1. First we consider J1. By Hölder inequality and (25),

J1 � 2

|I |
∫
I

∣∣A1f (y)
∣∣dy = 2

|I |
∫
I

∣∣(b − bI )Tf (y)
∣∣dy � 2

(
1

|I |
∫
I

∣∣(b − bI )
∣∣s′

dy

)1/s′(
1

|I |
∫
I

∣∣Tf (y)
∣∣s dy

)1/s

� 2‖b‖BMOMs(Tf )(x).

Step 2. Second we consider J2. Fix s1 such that s > s1 > m′, and let s2 = ss1
s−s1

, then we have

J2 � 2
1

|I |
∫
I

∣∣A2f (y)
∣∣dy � 2

(
1

|I |
∫
I

∣∣A2f (y)
∣∣s1 dy

)1/s1

� 2

(
1

|I |
∫

32I

∣∣(b − bI )f (y)
∣∣s1 dy

)1/s1

� C

(
1

|32I |
∫

32I

|b − bI |s2 dy

)1/s2
(

1

|32I |
∫

32I

∣∣f (y)
∣∣s dy

)1/s

� C‖b‖BMOMs(f )(x).

Step 3. Last we consider J3. Set cI = ∫
|z−x0|>32l

K(x0, z)(b(z) − bI )f (z) dz, then we have that

J3 � 2

|I |
∫
I

∣∣A3f (y) − cI

∣∣dy � 2
1

|I |
∫
I

∣∣∣∣
∫

|z−x0|�32l

{
K(y, z) − K(x0, z)

}(
b(z) − bI

)
f (z) dz

∣∣∣∣dy

� 2
1

|I |
∫
I

∫
|z−x0|>32l

∣∣{K(y, z) − K(x0, z)
}(

b(z) − bI

)
f (z)

∣∣dzdy

= 2
1

|I |
∫
I

∞∑
k=5

∫
k k+1

∣∣{K(y, z) − K(x0, z)
}(

b(z) − bI

)
f (z)

∣∣dzdy.
2 l�|z−x0|<2 l
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From Hölder’s inequality, we get

J3 � 2
1

|I |
∫
I

∞∑
k=5

( ∫
2k l�|z−x0|<2k+1l

∣∣K(y, z) − K(x0, z)
∣∣m dz

)1/m

×
( ∫

2k l�|z−x0|<2k+1l

∣∣(b(z) − bI

)
f (z)

∣∣m′
dz

)1/m′

dy

� 2
1

|I |
∫
I

∞∑
k=5

( ∫
2k l�|z−x0|<2k+1l

∣∣K(y, z) − K(x0, z)
∣∣m dz

)1/m(
2kl

)n/m′
k

× 1

(2kl)n/m′
k

( ∫
2k l�|z−x0|<2k+1l

∣∣(b(z) − bI

)
f (z)

∣∣m′
dz

)1/m′

dy

� C sup
k�5

1

(2kl)n/m′
k

( ∫
2k l�|z−x0|<2k+1l

∣∣(b(z) − bI

)
f (z)

∣∣m′
dz

)1/m′

� C sup
k�5

1

k

(
1

(2kl)n

∫
|z−x0|<2k+1l

∣∣(b(z) − b2k+1I + b2k+1I − bI

)
f (z)

∣∣m′
dz

)1/m′

� C sup
k�5

1

k
(k + 2)‖b‖BMOMsf (x)

(
by (24)

)
� C‖b‖BMOMsf (x).

This completes the proof of Lemma 5. �
Proof of Theorem 1. Now we begin to prove Theorem 1. Considering Remark 1, we can assume q > n

2 , q ′ < p. We
first prove (i). By Proposition 1 and Theorem A, it suffices to prove that K1 satisfies H(q) (see (6)). From (9), we
have

( ∫
2k l�|y−x0|<2k+1l

∣∣K1(x, y) − K1(x0, y)
∣∣q dy

)1/q

� CN

lδ

(2kl)n−2+δ

1

{1 + m(x0,V )2kl}N
∫

B(x0,2k+3l)

V (y)q dy1/q

� CN

lδ

(2kl)n−2+δ

1

{1 + m(x0,V )2kl}N
(
2kl

)−n/q ′ ∫
B(x0,2k l)

V (ξ) dξ

� CN

lδ

(2kl)n−2+δ

(
2kl

)n/q−2
(by Lemma 1)

� C
lδ

(2kl)(n/q ′)+δ
.

Thus, we can get

∞∑
k=5

k
(
2kl

) n
q′

( ∫
k k+1

∣∣K1(x, y) − K1(x0, y)
∣∣q dy

)1/q

�
∞∑

k=5

Ck

(2k)δ
� C.
2 l�|y−x0|<2 l
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For the proof of (ii) it suffices to prove that K2 satisfies H(2q). From (11), we have

( ∫
2k l�|y−x0|<2k+1l

∣∣K2(x, y) − K2(x0, y)
∣∣2q

dy

)1/(2q)

� CN

lδ

(2kl)n−1+δ

1

{1 + m(x0,V )2kl}N
∫

B(x0,2k+3l)

V (ξ)q dξ1/(2q)

� CN

lδ

(2kl)n−1+δ

1

{1 + m(x0,V )2kl}N
(
2kl

)−n/(2q ′)
∫

B(x0,2k l)

V (ξ) dξ1/2

� CN

lδ

(2kl)n−1+δ

(
2kl

)−n/(2q ′)+(n−2)/2 � C
lδ

(2kl)δ

(
2kl

)−n/(2q)′
,

hence,

∞∑
k=5

k
(
2kl

) n
(2q)′

( ∫
2k l�|y−x0|<2k+1l

∣∣K2(x, y) − K2(x0, y)
∣∣2q

dy

)1/(2q)

�
∞∑

k=5

Ck

(2k)δ
� C.

At last, we prove (iii). It suffices to prove that K3 satisfies H(p0). From (13), we have

( ∫
2k l�|y−x0|<2k+1l

∣∣K3(x, y) − K3(x0, y)
∣∣p0 dy

)1/p0

� CN

lδ

(2kl)n−1+δ

1

{1 + m(x0,V )2kl}N
∥∥∥∥

∫
V (ξ)χB(x0,2k+3l)

|y − ξ |n−1
dξ

∥∥∥∥
L

p0
y

+ lδ

(2kl)(n/p′
0)+δ

� CN

lδ

(2kl)n−1+δ

1

{1 + m(x0,V )2kl}N
∫

B(x0,2k+3l)

V (ξ)q dξ1/q + lδ

(2kl)(n/p′
0)+δ

� CN

lδ

(2kl)n−1+δ

1

{1 + m(x0,V )2kl}N
(
2kl

)−n/q ′ ∫
B(x0,2k l)

V (ξ) dξ + lδ

(2kl)(n/p′
0)+δ

� CN

lδ

(2kl)n−1+δ

(
2kl

)n/q−2 + lδ

(2kl)(n/p′
0)+δ

� C
lδ

(2kl)(n/p′
0)+δ

,

therefore,

∞∑
k=5

k
(
2kl

) n

p′
0

( ∫
2k l�|y−x0|<2k+1l

∣∣K3(x, y) − K3(x0, y)
∣∣p0 dy

)1/p0

�
∞∑

k=5

Ck

(2k)δ
� C. �

4. The converse result

This section is devoted to the converse problem. Recall that T3 = ∇(−Δ+V )−1/2 is the Riesz transform associated
to Schrödinger operator. A natural problem is that whether the converse holds. Namely, if [b,T3] is bounded on L2,
do we have b ∈ BMO? This is quite subtle. If V ≡ 0, it reduces to the classical Riesz transform. However, for general
V ∈ Bq , the converse fails. Considering V ≡ 1, which is in Bq for every q > 1, we have the following:

Theorem 2. There exist a function b /∈ BMO, such that [b,T3] is bounded on L2.
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Proof. Consider b = xj , we know that b /∈ BMO. We have that

[b,T3]f = xj∇(−Δ + 1)−1/2f − ∇(−Δ + 1)−1/2(xjf ).

From Plancherel equality, we can get

∥∥[b,T3]f
∥∥

2 =
∥∥∥∥∂j

(
ξ

(1 + ξ2)1/2
f̂

)
− ξ

(1 + ξ2)1/2
∂j f̂

∥∥∥∥
2
=

∥∥∥∥∂j

(
ξ

(1 + ξ2)1/2

)
f̂

∥∥∥∥
2
� ‖f ‖2. �

The converse example in Theorem 2 implies that the assumption V ∈ Bq is too weak, it cannot guarantee the
function b ∈ BMO. However if we assume V satisfies some additional conditions, for example, if V is Lp integrable,
then the converse could be true. Let T ′

3 = (−Δ)1/2(−Δ + V )−1/2, then from T ′
3 = (−Δ)−1/2∇ · T3, we know the

results above also hold with T3 replaced by T ′
3.

Theorem 3. If [b,T3], [b,T ′
3] and V 1/2(−Δ)−1/2 is bounded on L2, then b ∈ BMO.

Proof. From [b,T3], [b,T ′
3] is bounded on L2, and

[b,T3] = [
b,∇(−Δ)−1/2T ′

3

] = [
b,∇(−Δ)−1/2]T ′

3 + ∇(−Δ)−1/2[b,T ′
3

]
,

we have [b,∇(−Δ)−1/2]T ′
3 is bounded on L2.

We claim that [b,∇(−Δ)−1/2] is bounded on L2, which implies the theorem from the well-known theorem
of Coifman, Rochberg and Weiss. It suffices to prove that T ′

3 has a converse bounded on L2. Note that T ′−1
3 =

(−Δ + V )1/2(−Δ)−1/2, and

T ′−1
3 f = (−Δ + V )1/2(−Δ)−1/2f = (−Δ + V )−1/2(−Δ + V )(−Δ)−1/2f

= (−Δ + V )−1/2(−Δ)1/2f + (−Δ + V )−1/2V 1/2V 1/2(−Δ)−1/2f.

Therefore, by using V 1/2(−Δ)−1/2 is bounded on L2, we can easily get the conclusion of Theorem 3. �
Corollary 2. If [b,T3], [b,T ′

3] is bounded on L2, and V ∈ Ln/2 ⋂
Bq for q > n/2, then b ∈ BMO.

Proof. We only need to prove that V 1/2(−Δ)−1/2 is bounded on L2. This follows directly from Hölder inequality
and fractional integration:∥∥V 1/2(−Δ)−1/2f

∥∥
2 � C

∥∥V 1/2
∥∥

n

∥∥(−Δ)−1/2f
∥∥

2n/(n−2)
� C‖V ‖1/2

n/2‖f ‖2. �
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